Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Forms of nitrogen inputs regulate the intensity of soil acidification
AU - Wang, Ze
AU - Tao, Tingting
AU - Wang, Hu
AU - Chen, Ji
AU - Small, Gaston E.
AU - Johnson, David
AU - Chen, Jihui
AU - Zhang, Yingjun
AU - Zhu, Qichao
AU - Zhang, Shengmin
AU - Song, Yantao
AU - Kattge, Jens
AU - Guo, Peng
AU - Sun, Xiao
N1 - Publisher Copyright: © 2023 John Wiley & Sons Ltd.
PY - 2023/7/31
Y1 - 2023/7/31
N2 - Soil acidification induced by reactive nitrogen (N) inputs can alter the structure and function of terrestrial ecosystems. Because different N-transformation processes contribute to the production and consumption of H+, the magnitude of acidification likely depends on the relative amounts of organic N (ON) and inorganic N (IN) inputs. However, few studies have explicitly measured the effects of N composition on soil acidification. In this study, we first conducted a meta-analysis to test the effects of ON or IN inputs on soil acidification across 53 studies in grasslands. We then compared soil acidification across five different ON:IN ratios and two input rates based on long-term field N addition experiments. The meta-analysis showed that ON had weaker effects on soil acidification than IN when the N addition rate was above 20 g N m−2 year−1. The field experiment confirmed the findings from meta-analysis: N addition with proportions of ON ≥ 20% caused less soil acidification, especially at a high input rate (30 g N m−2 year−1). Structural equation model analysis showed that this result was largely due to a relatively low rate of H+ production from ON as NH3 volatilization and uptake of ON and NH4+ by the dominant grass species Leymus chinensis (which are both lower net contributors to H+ production) result in less NH4+ available for nitrification (which is a higher net contributor to H+ production). These results indicate that the evaluation of soil acidification induced by N inputs should consider N forms and manipulations of relative composition of N inputs may provide an effective approach to alleviate the N-induced soil acidification.
AB - Soil acidification induced by reactive nitrogen (N) inputs can alter the structure and function of terrestrial ecosystems. Because different N-transformation processes contribute to the production and consumption of H+, the magnitude of acidification likely depends on the relative amounts of organic N (ON) and inorganic N (IN) inputs. However, few studies have explicitly measured the effects of N composition on soil acidification. In this study, we first conducted a meta-analysis to test the effects of ON or IN inputs on soil acidification across 53 studies in grasslands. We then compared soil acidification across five different ON:IN ratios and two input rates based on long-term field N addition experiments. The meta-analysis showed that ON had weaker effects on soil acidification than IN when the N addition rate was above 20 g N m−2 year−1. The field experiment confirmed the findings from meta-analysis: N addition with proportions of ON ≥ 20% caused less soil acidification, especially at a high input rate (30 g N m−2 year−1). Structural equation model analysis showed that this result was largely due to a relatively low rate of H+ production from ON as NH3 volatilization and uptake of ON and NH4+ by the dominant grass species Leymus chinensis (which are both lower net contributors to H+ production) result in less NH4+ available for nitrification (which is a higher net contributor to H+ production). These results indicate that the evaluation of soil acidification induced by N inputs should consider N forms and manipulations of relative composition of N inputs may provide an effective approach to alleviate the N-induced soil acidification.
KW - exchangeable cations
KW - nitrogen addition rate
KW - nitrogen composition
KW - plant community
KW - soil buffering system
KW - soil pH
U2 - 10.1111/gcb.16746
DO - 10.1111/gcb.16746
M3 - Journal article
C2 - 37186143
AN - SCOPUS:85158093093
VL - 29
SP - 4044
EP - 4055
JO - Global Change Biology
JF - Global Change Biology
SN - 1354-1013
IS - 14
ER -