Home > Research > Publications & Outputs > Functional specialisation of yeast Rho1 GTP exc...


Text available via DOI:

View graph of relations

Functional specialisation of yeast Rho1 GTP exchange factors

Research output: Contribution to Journal/MagazineJournal articlepeer-review

  • Sue Ann Krause
  • Michael J. Cundell
  • Pak P. Poon
  • Josephine McGhie
  • Gerry C. Johnston
  • Clive Price
  • Joseph V. Gray
<mark>Journal publication date</mark>1/06/2012
<mark>Journal</mark>Journal of Cell Science
Issue number11
Number of pages11
Pages (from-to)2721-2731
Publication StatusPublished
<mark>Original language</mark>English


Rho GTPases are regulated in complex spatiotemporal patterns that might be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialisation of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the orthologue of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localise differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck, but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localisation is largely dependent on Ack1, a SEL1-domain-containing protein; Tus1 function and localisation is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1.