Home > Research > Publications & Outputs > Future Arctic ozone recovery

Links

Text available via DOI:

View graph of relations

Future Arctic ozone recovery: the importance of chemistry and dynamics

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Future Arctic ozone recovery: the importance of chemistry and dynamics. / Bednarz, Ewa Monika; Maycock, Amanda C.; Abraham, N. Luke et al.
In: Atmospheric Chemistry and Physics , Vol. 16, No. 18, 28.09.2016, p. 12159-12176.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Bednarz, EM, Maycock, AC, Abraham, NL, Braesicke, P, Dessens, O & Pyle, JA 2016, 'Future Arctic ozone recovery: the importance of chemistry and dynamics', Atmospheric Chemistry and Physics , vol. 16, no. 18, pp. 12159-12176. https://doi.org/10.5194/acp-16-12159-2016

APA

Bednarz, E. M., Maycock, A. C., Abraham, N. L., Braesicke, P., Dessens, O., & Pyle, J. A. (2016). Future Arctic ozone recovery: the importance of chemistry and dynamics. Atmospheric Chemistry and Physics , 16(18), 12159-12176. https://doi.org/10.5194/acp-16-12159-2016

Vancouver

Bednarz EM, Maycock AC, Abraham NL, Braesicke P, Dessens O, Pyle JA. Future Arctic ozone recovery: the importance of chemistry and dynamics. Atmospheric Chemistry and Physics . 2016 Sept 28;16(18):12159-12176. doi: 10.5194/acp-16-12159-2016

Author

Bednarz, Ewa Monika ; Maycock, Amanda C. ; Abraham, N. Luke et al. / Future Arctic ozone recovery : the importance of chemistry and dynamics. In: Atmospheric Chemistry and Physics . 2016 ; Vol. 16, No. 18. pp. 12159-12176.

Bibtex

@article{bc130bfa097a44f18a141cb4b7da92b7,
title = "Future Arctic ozone recovery: the importance of chemistry and dynamics",
abstract = "Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a seven-member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960–2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of  ∼  11.5 DU decade−1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by  ∼  50–100 DU below the corresponding long-term ensemble mean for that period, reaching values characteristic of the near-present-day average level. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen-induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of 2 between the periods 2001–2020 and 2061–2080. However, in the presence of a cold and strong polar vortex, elevated halogen-induced ozone losses well above the corresponding long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a significant cooling trend in the Arctic winter mid- and upper stratosphere, but there is less confidence in the projected temperature trends in the lower stratosphere (100–50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively driven stratospheric cooling. However, individual winters characterised by significantly suppressed downwelling, reduced transport and anomalously low temperatures continue to occur in the future. We conclude that, despite the projected long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue in the future, thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades to come.",
author = "Bednarz, {Ewa Monika} and Maycock, {Amanda C.} and Abraham, {N. Luke} and Peter Braesicke and Olivier Dessens and Pyle, {John A.}",
year = "2016",
month = sep,
day = "28",
doi = "10.5194/acp-16-12159-2016",
language = "English",
volume = "16",
pages = "12159--12176",
journal = "Atmospheric Chemistry and Physics ",
issn = "1680-7316",
publisher = "Copernicus GmbH (Copernicus Publications) on behalf of the European Geosciences Union (EGU)",
number = "18",

}

RIS

TY - JOUR

T1 - Future Arctic ozone recovery

T2 - the importance of chemistry and dynamics

AU - Bednarz, Ewa Monika

AU - Maycock, Amanda C.

AU - Abraham, N. Luke

AU - Braesicke, Peter

AU - Dessens, Olivier

AU - Pyle, John A.

PY - 2016/9/28

Y1 - 2016/9/28

N2 - Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a seven-member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960–2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of  ∼  11.5 DU decade−1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by  ∼  50–100 DU below the corresponding long-term ensemble mean for that period, reaching values characteristic of the near-present-day average level. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen-induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of 2 between the periods 2001–2020 and 2061–2080. However, in the presence of a cold and strong polar vortex, elevated halogen-induced ozone losses well above the corresponding long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a significant cooling trend in the Arctic winter mid- and upper stratosphere, but there is less confidence in the projected temperature trends in the lower stratosphere (100–50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively driven stratospheric cooling. However, individual winters characterised by significantly suppressed downwelling, reduced transport and anomalously low temperatures continue to occur in the future. We conclude that, despite the projected long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue in the future, thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades to come.

AB - Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a seven-member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960–2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of  ∼  11.5 DU decade−1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by  ∼  50–100 DU below the corresponding long-term ensemble mean for that period, reaching values characteristic of the near-present-day average level. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen-induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of 2 between the periods 2001–2020 and 2061–2080. However, in the presence of a cold and strong polar vortex, elevated halogen-induced ozone losses well above the corresponding long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a significant cooling trend in the Arctic winter mid- and upper stratosphere, but there is less confidence in the projected temperature trends in the lower stratosphere (100–50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively driven stratospheric cooling. However, individual winters characterised by significantly suppressed downwelling, reduced transport and anomalously low temperatures continue to occur in the future. We conclude that, despite the projected long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue in the future, thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades to come.

U2 - 10.5194/acp-16-12159-2016

DO - 10.5194/acp-16-12159-2016

M3 - Journal article

VL - 16

SP - 12159

EP - 12176

JO - Atmospheric Chemistry and Physics

JF - Atmospheric Chemistry and Physics

SN - 1680-7316

IS - 18

ER -