Home > Research > Publications & Outputs > Genome evolution of Wolbachia strain wPip from ...

Electronic data

  • Mol Biol Evol 2008 Klasson 1877 87

    Rights statement: © 2008 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Final published version, 953 KB, PDF document

    Available under license: CC BY

Links

Text available via DOI:

View graph of relations

Genome evolution of Wolbachia strain wPip from the Culex pipiens group

Research output: Contribution to journalJournal articlepeer-review

Published

Standard

Genome evolution of Wolbachia strain wPip from the Culex pipiens group. / Klasson, Lisa; Walker, Thomas; Sebaihia, Mohammed; Sanders, Mandy J.; Quail, Michael A.; Lord, Angela; Sanders, Susanne; Earl, Julie; O'Neill, Scott L.; Thomson, Nicholas; Sinkins, Steven P.; Parkhill, Julian.

In: Molecular Biology and Evolution, Vol. 25, No. 9, 09.2008, p. 1877-1887.

Research output: Contribution to journalJournal articlepeer-review

Harvard

Klasson, L, Walker, T, Sebaihia, M, Sanders, MJ, Quail, MA, Lord, A, Sanders, S, Earl, J, O'Neill, SL, Thomson, N, Sinkins, SP & Parkhill, J 2008, 'Genome evolution of Wolbachia strain wPip from the Culex pipiens group', Molecular Biology and Evolution, vol. 25, no. 9, pp. 1877-1887. https://doi.org/10.1093/molbev/msn133

APA

Klasson, L., Walker, T., Sebaihia, M., Sanders, M. J., Quail, M. A., Lord, A., Sanders, S., Earl, J., O'Neill, S. L., Thomson, N., Sinkins, S. P., & Parkhill, J. (2008). Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Molecular Biology and Evolution, 25(9), 1877-1887. https://doi.org/10.1093/molbev/msn133

Vancouver

Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A et al. Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Molecular Biology and Evolution. 2008 Sep;25(9):1877-1887. https://doi.org/10.1093/molbev/msn133

Author

Klasson, Lisa ; Walker, Thomas ; Sebaihia, Mohammed ; Sanders, Mandy J. ; Quail, Michael A. ; Lord, Angela ; Sanders, Susanne ; Earl, Julie ; O'Neill, Scott L. ; Thomson, Nicholas ; Sinkins, Steven P. ; Parkhill, Julian. / Genome evolution of Wolbachia strain wPip from the Culex pipiens group. In: Molecular Biology and Evolution. 2008 ; Vol. 25, No. 9. pp. 1877-1887.

Bibtex

@article{d6dd977ca3684b0c862b4691242473fb,
title = "Genome evolution of Wolbachia strain wPip from the Culex pipiens group",
abstract = "The obligate intracellular bacterium Wolbachia pipientis strain wPip induces cytoplasmic incompatibility (CI), patterns of crossing sterility, in the Culex pipiens group of mosquitoes. The complete sequence is presented of the 1.48-Mbp genome of wPip which encodes 1386 coding sequences (CDSs), representing the first genome sequence of a B-supergroup Wolbachia. Comparisons were made with the smaller genomes of Wolbachia strains wMel of Drosophila melanogaster, an A-supergroup Wolbachia that is also a CI inducer, and wBm, a mutualist of Brugia malayi nematodes that belongs to the D-supergroup of Wolbachia. Despite extensive gene order rearrangement, a core set of Wolbachia genes shared between the 3 genomes can be identified and contrasts with a flexible gene pool where rapid evolution has taken place. There are much more extensive prophage and ankyrin repeat encoding (ANK) gene components of the wPip genome compared with wMel and wBm, and both are likely to be of considerable importance in wPip biology. Five WO-B–like prophage regions are present and contain some genes that are identical or highly similar in multiple prophage copies, whereas other genes are unique, and it is likely that extensive recombination, duplication, and insertion have occurred between copies. A much larger number of genes encode ankyrin repeat (ANK) proteins in wPip, with 60 present compared with 23 in wMel, many of which are within or close to the prophage regions. It is likely that this pattern is partly a result of expansions in the wPip lineage, due for example to gene duplication, but their presence is in some cases more ancient. The wPip genome underlines the considerable evolutionary flexibility of Wolbachia, providing clear evidence for the rapid evolution of ANK-encoding genes and of prophage regions. This host–Wolbachia system, with its complex patterns of sterility induced between populations, now provides an excellent model for unraveling the molecular systems underlying host reproductive manipulation.",
keywords = "endosymbiont , Wolbachia, mosquito, cytoplasmic incompatibility, prophage, ankyrin",
author = "Lisa Klasson and Thomas Walker and Mohammed Sebaihia and Sanders, {Mandy J.} and Quail, {Michael A.} and Angela Lord and Susanne Sanders and Julie Earl and O'Neill, {Scott L.} and Nicholas Thomson and Sinkins, {Steven P.} and Julian Parkhill",
note = "{\textcopyright} 2008 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.",
year = "2008",
month = sep,
doi = "10.1093/molbev/msn133",
language = "English",
volume = "25",
pages = "1877--1887",
journal = "Molecular Biology and Evolution",
issn = "0737-4038",
publisher = "Oxford University Press",
number = "9",

}

RIS

TY - JOUR

T1 - Genome evolution of Wolbachia strain wPip from the Culex pipiens group

AU - Klasson, Lisa

AU - Walker, Thomas

AU - Sebaihia, Mohammed

AU - Sanders, Mandy J.

AU - Quail, Michael A.

AU - Lord, Angela

AU - Sanders, Susanne

AU - Earl, Julie

AU - O'Neill, Scott L.

AU - Thomson, Nicholas

AU - Sinkins, Steven P.

AU - Parkhill, Julian

N1 - © 2008 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

PY - 2008/9

Y1 - 2008/9

N2 - The obligate intracellular bacterium Wolbachia pipientis strain wPip induces cytoplasmic incompatibility (CI), patterns of crossing sterility, in the Culex pipiens group of mosquitoes. The complete sequence is presented of the 1.48-Mbp genome of wPip which encodes 1386 coding sequences (CDSs), representing the first genome sequence of a B-supergroup Wolbachia. Comparisons were made with the smaller genomes of Wolbachia strains wMel of Drosophila melanogaster, an A-supergroup Wolbachia that is also a CI inducer, and wBm, a mutualist of Brugia malayi nematodes that belongs to the D-supergroup of Wolbachia. Despite extensive gene order rearrangement, a core set of Wolbachia genes shared between the 3 genomes can be identified and contrasts with a flexible gene pool where rapid evolution has taken place. There are much more extensive prophage and ankyrin repeat encoding (ANK) gene components of the wPip genome compared with wMel and wBm, and both are likely to be of considerable importance in wPip biology. Five WO-B–like prophage regions are present and contain some genes that are identical or highly similar in multiple prophage copies, whereas other genes are unique, and it is likely that extensive recombination, duplication, and insertion have occurred between copies. A much larger number of genes encode ankyrin repeat (ANK) proteins in wPip, with 60 present compared with 23 in wMel, many of which are within or close to the prophage regions. It is likely that this pattern is partly a result of expansions in the wPip lineage, due for example to gene duplication, but their presence is in some cases more ancient. The wPip genome underlines the considerable evolutionary flexibility of Wolbachia, providing clear evidence for the rapid evolution of ANK-encoding genes and of prophage regions. This host–Wolbachia system, with its complex patterns of sterility induced between populations, now provides an excellent model for unraveling the molecular systems underlying host reproductive manipulation.

AB - The obligate intracellular bacterium Wolbachia pipientis strain wPip induces cytoplasmic incompatibility (CI), patterns of crossing sterility, in the Culex pipiens group of mosquitoes. The complete sequence is presented of the 1.48-Mbp genome of wPip which encodes 1386 coding sequences (CDSs), representing the first genome sequence of a B-supergroup Wolbachia. Comparisons were made with the smaller genomes of Wolbachia strains wMel of Drosophila melanogaster, an A-supergroup Wolbachia that is also a CI inducer, and wBm, a mutualist of Brugia malayi nematodes that belongs to the D-supergroup of Wolbachia. Despite extensive gene order rearrangement, a core set of Wolbachia genes shared between the 3 genomes can be identified and contrasts with a flexible gene pool where rapid evolution has taken place. There are much more extensive prophage and ankyrin repeat encoding (ANK) gene components of the wPip genome compared with wMel and wBm, and both are likely to be of considerable importance in wPip biology. Five WO-B–like prophage regions are present and contain some genes that are identical or highly similar in multiple prophage copies, whereas other genes are unique, and it is likely that extensive recombination, duplication, and insertion have occurred between copies. A much larger number of genes encode ankyrin repeat (ANK) proteins in wPip, with 60 present compared with 23 in wMel, many of which are within or close to the prophage regions. It is likely that this pattern is partly a result of expansions in the wPip lineage, due for example to gene duplication, but their presence is in some cases more ancient. The wPip genome underlines the considerable evolutionary flexibility of Wolbachia, providing clear evidence for the rapid evolution of ANK-encoding genes and of prophage regions. This host–Wolbachia system, with its complex patterns of sterility induced between populations, now provides an excellent model for unraveling the molecular systems underlying host reproductive manipulation.

KW - endosymbiont

KW - Wolbachia

KW - mosquito

KW - cytoplasmic incompatibility

KW - prophage

KW - ankyrin

UR - http://www.scopus.com/inward/record.url?scp=49749134637&partnerID=8YFLogxK

U2 - 10.1093/molbev/msn133

DO - 10.1093/molbev/msn133

M3 - Journal article

AN - SCOPUS:49749134637

VL - 25

SP - 1877

EP - 1887

JO - Molecular Biology and Evolution

JF - Molecular Biology and Evolution

SN - 0737-4038

IS - 9

ER -