Accepted author manuscript, 322 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Genome-wide identification of yellow gene family in Hermetia illucens and functional analysis of yellow-y by CRISPR/Cas9
AU - Dong, Y.
AU - Xu, X.
AU - Qian, L.
AU - Kou, Z.
AU - Andongma, A.A.
AU - Zhou, L.
AU - Huang, Y.
AU - Wang, Y.
PY - 2025/2/13
Y1 - 2025/2/13
N2 - The yellow gene family plays a crucial role in insect pigmentation. It has potential for use as a visible marker gene in genetic manipulation and transgenic engineering in several model and non-model insects. Sadly, yellow genes have rarely been identified in Stratiomyidae species and the functions of yellow genes are relatively unknown. In the present study, we first manually annotated and curated 10 yellow genes in the black soldier fly (BSF), Hermetia illucens (Stratiomyidae). Then, the conserved amino acids in the major royal jelly proteins (MRJPs) domain, structural architecture and phylogenetic relationship of yellow genes in BSF were analyzed. We found that the BSF yellow-y, yellow-c and yellow-f genes are expressed at all developmental stages, especially in the prepupal stage. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we successfully disrupted yellow-y, yellow-c and yellow-f in the BSF. Consequently, the mutation of yellow-y clearly resulted in a pale-yellow body color in prepupae, pupae and adults, instead of the typical black body color of the wild type. However, the mutation of yellow-c or yellow-f genes did not result in any change in color of the insects, when compared with the wild type. Our study indicates that the BSF yellow-y gene plays a role in body pigmentation, providing an optimal marker gene for the genetic manipulation of BSF.
AB - The yellow gene family plays a crucial role in insect pigmentation. It has potential for use as a visible marker gene in genetic manipulation and transgenic engineering in several model and non-model insects. Sadly, yellow genes have rarely been identified in Stratiomyidae species and the functions of yellow genes are relatively unknown. In the present study, we first manually annotated and curated 10 yellow genes in the black soldier fly (BSF), Hermetia illucens (Stratiomyidae). Then, the conserved amino acids in the major royal jelly proteins (MRJPs) domain, structural architecture and phylogenetic relationship of yellow genes in BSF were analyzed. We found that the BSF yellow-y, yellow-c and yellow-f genes are expressed at all developmental stages, especially in the prepupal stage. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we successfully disrupted yellow-y, yellow-c and yellow-f in the BSF. Consequently, the mutation of yellow-y clearly resulted in a pale-yellow body color in prepupae, pupae and adults, instead of the typical black body color of the wild type. However, the mutation of yellow-c or yellow-f genes did not result in any change in color of the insects, when compared with the wild type. Our study indicates that the BSF yellow-y gene plays a role in body pigmentation, providing an optimal marker gene for the genetic manipulation of BSF.
KW - CRISPR-Cas9
KW - Hermetia illucens
KW - pigmentation
KW - yellow family
KW - yellow-y
U2 - 10.1111/1744-7917.13371
DO - 10.1111/1744-7917.13371
M3 - Journal article
VL - 32
SP - 115
EP - 126
JO - Insect Science
JF - Insect Science
SN - 1672-9609
IS - 1
ER -