Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Glide-Symmetric Lens Antenna in Gap Waveguide Technology
AU - Yuan, Wei
AU - Chen, Jian Feng
AU - Zhang, Cheng
AU - Tang, Wen Xuan
AU - Wang, Lei
AU - Cheng, Qiang
AU - Cui, Tie Jun
PY - 2020/4/30
Y1 - 2020/4/30
N2 - In this article, we propose a wideband fully metallic impedance-matching horn lens antenna based on glide symmetry realized in the gap waveguide technology. A multiple iterative method is adopted, which overcomes the limitation of large phase deviations at the interface of traditional lens antennas, thus increases the directivity as a result. Moreover, the glide-symmetric configurations of inner metallic pins within the gap waveguide are employed to construct the artificial dielectric lens, with the advantage of the ultralow dispersion, which is especially helpful to broaden the working bandwidth and improve the lens performance. The antenna is fed by a stepped double-ridged gap waveguide which can easily excite the antenna working in a wideband. To reduce the undesired reflections at the antenna aperture, the antenna is ended with a tapered structure as an impedance transition. A prototype of the horn lens antenna is manufactured and measured, showing a broad operation bandwidth from 12 to 18.5 GHz with S 11 less than −10 dB. The antenna can be further extended to the millimeter band due to the low losses of the gap waveguide at high frequencies and the iterative method can also be applied to other types of lens antenna designs.
AB - In this article, we propose a wideband fully metallic impedance-matching horn lens antenna based on glide symmetry realized in the gap waveguide technology. A multiple iterative method is adopted, which overcomes the limitation of large phase deviations at the interface of traditional lens antennas, thus increases the directivity as a result. Moreover, the glide-symmetric configurations of inner metallic pins within the gap waveguide are employed to construct the artificial dielectric lens, with the advantage of the ultralow dispersion, which is especially helpful to broaden the working bandwidth and improve the lens performance. The antenna is fed by a stepped double-ridged gap waveguide which can easily excite the antenna working in a wideband. To reduce the undesired reflections at the antenna aperture, the antenna is ended with a tapered structure as an impedance transition. A prototype of the horn lens antenna is manufactured and measured, showing a broad operation bandwidth from 12 to 18.5 GHz with S 11 less than −10 dB. The antenna can be further extended to the millimeter band due to the low losses of the gap waveguide at high frequencies and the iterative method can also be applied to other types of lens antenna designs.
U2 - 10.1109/TAP.2019.2955919
DO - 10.1109/TAP.2019.2955919
M3 - Journal article
VL - 68
SP - 2612
EP - 2620
JO - IEEE Transactions on Antennas and Propagation
JF - IEEE Transactions on Antennas and Propagation
SN - 0018-926X
IS - 4
ER -