Home > Research > Publications & Outputs > GRAIL-identified gravity anomalies in Oceanus P...

Electronic data

  • ICARUS_GRAIL_submitted

    Rights statement: This is the author’s version of a work that was accepted for publication in Icarus. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Icarus, 331, 2019 DOI: 10.1016/j.icarus.2019.05.027

    Accepted author manuscript, 4.26 MB, PDF document

    Available under license: CC BY-NC-ND

Links

Text available via DOI:

View graph of relations

GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and magmatic structures on the Moon

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>1/10/2019
<mark>Journal</mark>Icarus
Volume331
Number of pages17
Pages (from-to)192-208
Publication StatusPublished
Early online date23/05/19
<mark>Original language</mark>English

Abstract

Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter (~90–190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic complex (north and south). Each is characterized by distinct surface geologic features suggestive of ancient impact craters and/or volcanic/plutonic activity. Here, we combine geologic analyses with forward modeling of high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission in order to constrain the subsurface structures that contribute to these four PBGAs. The GRAIL data presented here, at spherical harmonic degrees 6–660, permit higher resolution analyses of these anomalies than previously reported, and reveal new information about subsurface structures. Specifically, we find that the amplitudes of the four PBGAs cannot be explained solely by mare-flooded craters, as suggested in previous work; an additional density contrast is required to explain the high-amplitude of the PBGAs. For Northern Flamsteed (190 km diameter), the additional density contrast may be provided by impact-related mantle uplift. If the local crust has a density ~2800 kg/m3, then ~7 km of uplift is required for this anomaly, although less uplift is required if the local crust has a lower mean density of ~2500 kg/m3. For the Northern and Southern Marius Hills anomalies, the additional density contrast is consistent with the presence of a crustal complex of vertical dikes that occupies up to ~50% of the regionally thin crust. The structure of Southern Aristarchus Plateau (90 km diameter), an anomaly with crater-related topographic structures, remains ambiguous. Based on the relatively small size of the anomaly, we do not favor mantle uplift; however, understanding mantle response in a region of especially thin crust needs to be better resolved. It is more likely that this anomaly is due to subsurface magmatic material given the abundance of volcanic material in the surrounding region. Overall, the four PBGAs analyzed here are important in understanding the impact and volcanic/plutonic history of the Moon, specifically in a region of thin crust and elevated temperatures characteristic of the Procellarum KREEP Terrane.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Icarus. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Icarus, 331, 2019 DOI: 10.1016/j.icarus.2019.05.027