Rights statement: ©2024 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 2.05 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Guessing random additive noise decoding of network coded data transmitted over burst error channels
AU - Chatzigeorgiou, Ioannis
AU - Savostyanov, Dmitry
PY - 2024/9/30
Y1 - 2024/9/30
N2 - We consider a transmitter that encodes data packets using network coding and broadcasts coded packets. A receiver employing network decoding recovers the data packets if a sufficient number of error-free coded packets are gathered. The receiver does not abandon its efforts to recover the data packets if network decoding is unsuccessful; instead, it employs syndrome decoding (SD) in an effort to repair erroneous received coded packets, and then reattempts network decoding. Most decoding techniques, including SD, assume that errors are independently and identically distributed within received coded packets. Motivated by the guessing random additive noise decoding (GRAND) framework, we propose transversal GRAND (T-GRAND): an algorithm that exploits statistical dependence in the occurrence of errors, complements network decoding and recovers all data packets with a higher probability than SD. T-GRAND examines error vectors in order of their likelihood of occurring and altering the transmitted packets. Calculation and sorting of the likelihood values of all error vectors is a simple but computationally expensive process. To reduce the complexity of T-GRAND, we take advantage of the properties of the likelihood function and develop an efficient method, which identifies the most likely error vectors without computing and ordering all likelihood values.
AB - We consider a transmitter that encodes data packets using network coding and broadcasts coded packets. A receiver employing network decoding recovers the data packets if a sufficient number of error-free coded packets are gathered. The receiver does not abandon its efforts to recover the data packets if network decoding is unsuccessful; instead, it employs syndrome decoding (SD) in an effort to repair erroneous received coded packets, and then reattempts network decoding. Most decoding techniques, including SD, assume that errors are independently and identically distributed within received coded packets. Motivated by the guessing random additive noise decoding (GRAND) framework, we propose transversal GRAND (T-GRAND): an algorithm that exploits statistical dependence in the occurrence of errors, complements network decoding and recovers all data packets with a higher probability than SD. T-GRAND examines error vectors in order of their likelihood of occurring and altering the transmitted packets. Calculation and sorting of the likelihood values of all error vectors is a simple but computationally expensive process. To reduce the complexity of T-GRAND, we take advantage of the properties of the likelihood function and develop an efficient method, which identifies the most likely error vectors without computing and ordering all likelihood values.
KW - network coding
KW - Random linear codes
KW - burst noise
KW - syndome decoding
KW - guessing random additive noise decoding (GRAND)
KW - Gilbert-Elliott model
KW - algorithm
KW - Complexity analysis
U2 - 10.1109/TVT.2024.3383546
DO - 10.1109/TVT.2024.3383546
M3 - Journal article
VL - 73
SP - 12842
EP - 12857
JO - IEEE Transactions on Vehicular Technology
JF - IEEE Transactions on Vehicular Technology
SN - 0018-9545
IS - 9
ER -