Home > Research > Publications & Outputs > How butterflies keep their cool

Electronic data


Text available via DOI:

View graph of relations

How butterflies keep their cool: physical and ecological traits influence thermoregulatory ability and population trends

Research output: Contribution to Journal/MagazineJournal articlepeer-review

  • Andrew Bladon
  • Matthew Lewis
  • Eleanor Bladon
  • Sam Buckton
  • Stuart Corbett
  • S.R. Ewing
  • Matthew Hayes
  • Gwen Hitchcock
  • Richard Knock
  • Colin Lucas
  • Adam McVeigh
  • Rosa Menendez Martinez
  • Jonah Walker
  • Tom Fayle
  • Edgar Turner
<mark>Journal publication date</mark>1/11/2020
<mark>Journal</mark>Journal of Animal Ecology
Issue number11
Number of pages11
Pages (from-to)2440-2450
Publication StatusPublished
Early online date23/09/20
<mark>Original language</mark>English


1. Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change.
2. We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits.
3. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset.
4. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally.
5. Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species.