Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Hydrogen storage in microporous hypercrosslinked organic polymer networks
AU - Wood, Colin D.
AU - Tan, Bien
AU - Trewin, Abbie
AU - Niu, Hongjun
AU - Bradshaw, Darren
AU - Rosseinsky, Matthew J.
AU - Khimyak, Yaroslav Z.
AU - Campbell, Neil L.
AU - Kirk, Ralph
AU - Stoeckel, Ev
AU - Cooper, Andrew I.
PY - 2007/4/17
Y1 - 2007/4/17
N2 - A series of hypercrosslinked polymer networks has been synthesized by the self-condensation of bischloromethyl monomers such as dichloroxylene (DCX), 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), and 9,10-bis(chloromethyl)anthracene (BCMA). These materials are predominantly microporous and exhibit Brunauer-Emmett-Teller (BET) surface areas of up to 1904 m(2)/g as measured by N-2 adsorption at 77.3 K (Langmuir surface area = 2992 m(2)/g). Networks based on BCMBP exhibit a gravimetric storage capacity of 3.68 wt % at 15 bar and 77.3 K, the highest yet reported for an organic polymer. The micro- and mesostructure of the networks is explained by a combination of solid-state NMR, gas sorption measurements, pycnometry, and molecular simulations. The isosteric heat of sorption for H-2 on these materials is found to be in the range 6-7.5 kJ/mol. A molecular model is presented for a p-DCX network that simulates well certain key physical properties such as pore volume, pore width, absolute density, and bulk density. This model also predicts the isotherm shape and isosteric heat for H-2 sorption at 77.3 and 87.2 K but overestimates the absolute degree of H-2 uptake, most likely because of a degree of occluded, inaccessible porosity in the real physical samples.
AB - A series of hypercrosslinked polymer networks has been synthesized by the self-condensation of bischloromethyl monomers such as dichloroxylene (DCX), 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), and 9,10-bis(chloromethyl)anthracene (BCMA). These materials are predominantly microporous and exhibit Brunauer-Emmett-Teller (BET) surface areas of up to 1904 m(2)/g as measured by N-2 adsorption at 77.3 K (Langmuir surface area = 2992 m(2)/g). Networks based on BCMBP exhibit a gravimetric storage capacity of 3.68 wt % at 15 bar and 77.3 K, the highest yet reported for an organic polymer. The micro- and mesostructure of the networks is explained by a combination of solid-state NMR, gas sorption measurements, pycnometry, and molecular simulations. The isosteric heat of sorption for H-2 on these materials is found to be in the range 6-7.5 kJ/mol. A molecular model is presented for a p-DCX network that simulates well certain key physical properties such as pore volume, pore width, absolute density, and bulk density. This model also predicts the isotherm shape and isosteric heat for H-2 sorption at 77.3 and 87.2 K but overestimates the absolute degree of H-2 uptake, most likely because of a degree of occluded, inaccessible porosity in the real physical samples.
KW - SUPERCRITICAL CARBON-DIOXIDE
KW - CROSS-LINKED POLYSTYRENE
KW - PORE-SIZE DISTRIBUTION
KW - HIGH H-2 ADSORPTION
KW - SURFACE-AREA
KW - INTRINSIC MICROPOROSITY
KW - FRAMEWORK MATERIALS
KW - MOLECULAR-HYDROGEN
KW - ACTIVATED CARBONS
KW - POROGENIC SOLVENT
U2 - 10.1021/cm070356a
DO - 10.1021/cm070356a
M3 - Journal article
VL - 19
SP - 2034
EP - 2048
JO - Chemistry of Materials
JF - Chemistry of Materials
SN - 0897-4756
IS - 8
ER -