Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015-2017, from Sentinel 1-a/b SAR imagery
AU - Lemos, Adriano
AU - Shepherd, Andrew
AU - McMillan, Malcolm
AU - Hogg, Anna E.
AU - Hatton, Emma
AU - Joughin, Ian
PY - 2018/6/18
Y1 - 2018/6/18
N2 - Systematically monitoring Greenland's outlet glaciers is central to understanding the timescales over which their flow and sea level contributions evolve. In this study we use data from the new Sentinel-1a/b satellite constellation to generate 187 velocity maps, covering four key outlet glaciers in Greenland: Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm. These data provide a new high temporal resolution record (6-day averaged solutions) of each glacier's evolution since 2014, and resolve recent seasonal speedup periods and inter-annual changes in Greenland outlet glacier speed with an estimated certainty of 10%. We find that since 2012, Jakobshavn Isbræ has been decelerating, and now flows approximately 1250g yr-1 (10%), slower than 5 years previously, thus reversing an increasing trend in ice velocity that has persisted during the last decade. Despite this, we show that seasonal variability in ice velocity remains significant: up to 750g yr-1 (14%) at a distance of 12 km inland of the terminus. We also use our new dataset to estimate the duration of speedup periods (80-95 days) and to demonstrate a strong relationship between ice front position and ice flow at Jakobshavn Isbræ, with increases in speed of 1800g yr-1 in response to 1 km of retreat. Elsewhere, we record significant seasonal changes in flow of up to 25% (2015) and 18% (2016) at Petermann Glacier and Zachariæ Isstrøm, respectively. This study provides a first demonstration of the capacity of a new era of operational radar satellites to provide frequent and timely monitoring of ice sheet flow, and to better resolve the timescales over which glacier dynamics evolve.
AB - Systematically monitoring Greenland's outlet glaciers is central to understanding the timescales over which their flow and sea level contributions evolve. In this study we use data from the new Sentinel-1a/b satellite constellation to generate 187 velocity maps, covering four key outlet glaciers in Greenland: Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm. These data provide a new high temporal resolution record (6-day averaged solutions) of each glacier's evolution since 2014, and resolve recent seasonal speedup periods and inter-annual changes in Greenland outlet glacier speed with an estimated certainty of 10%. We find that since 2012, Jakobshavn Isbræ has been decelerating, and now flows approximately 1250g yr-1 (10%), slower than 5 years previously, thus reversing an increasing trend in ice velocity that has persisted during the last decade. Despite this, we show that seasonal variability in ice velocity remains significant: up to 750g yr-1 (14%) at a distance of 12 km inland of the terminus. We also use our new dataset to estimate the duration of speedup periods (80-95 days) and to demonstrate a strong relationship between ice front position and ice flow at Jakobshavn Isbræ, with increases in speed of 1800g yr-1 in response to 1 km of retreat. Elsewhere, we record significant seasonal changes in flow of up to 25% (2015) and 18% (2016) at Petermann Glacier and Zachariæ Isstrøm, respectively. This study provides a first demonstration of the capacity of a new era of operational radar satellites to provide frequent and timely monitoring of ice sheet flow, and to better resolve the timescales over which glacier dynamics evolve.
U2 - 10.5194/tc-12-2087-2018
DO - 10.5194/tc-12-2087-2018
M3 - Journal article
AN - SCOPUS:85048791997
VL - 12
SP - 2087
EP - 2097
JO - Cryosphere
JF - Cryosphere
SN - 1994-0416
IS - 6
ER -