Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - IDM
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
AU - Dai, Yongxing
AU - Liu, Jun
AU - Sun, Yifan
AU - Tong, Zekun
AU - Zhang, Chi
AU - Duan, Ling Yu
PY - 2022/2/28
Y1 - 2022/2/28
N2 - Unsupervised domain adaptive person re-identification (UDA re-ID) aims at transferring the labeled source domain's knowledge to improve the model's discriminability on the unlabeled target domain. From a novel perspective, we argue that the bridging between the source and target domains can be utilized to tackle the UDA re-ID task, and we focus on explicitly modeling appropriate intermediate domains to characterize this bridging. Specifically, we propose an Intermediate Domain Module (IDM) to generate intermediate domains' representations on-the-fly by mixing the source and target domains' hidden representations using two domain factors. Based on the “shortest geodesic path” definition, i.e., the intermediate domains along the shortest geodesic path between the two extreme domains can play a better bridging role, we propose two properties that these intermediate domains should satisfy. To ensure these two properties to better characterize appropriate intermediate domains, we enforce the bridge losses on intermediate domains' prediction space and feature space, and enforce a diversity loss on the two domain factors. The bridge losses aim at guiding the distribution of appropriate intermediate domains to keep the right distance to the source and target domains. The diversity loss serves as a regularization to prevent the generated intermediate domains from being over-fitting to either of the source and target domains. Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks, and the mAP gain is up to 7.7% on the challenging MSMT17 benchmark. Code is available at https://github.com/SikaStar/IDM.
AB - Unsupervised domain adaptive person re-identification (UDA re-ID) aims at transferring the labeled source domain's knowledge to improve the model's discriminability on the unlabeled target domain. From a novel perspective, we argue that the bridging between the source and target domains can be utilized to tackle the UDA re-ID task, and we focus on explicitly modeling appropriate intermediate domains to characterize this bridging. Specifically, we propose an Intermediate Domain Module (IDM) to generate intermediate domains' representations on-the-fly by mixing the source and target domains' hidden representations using two domain factors. Based on the “shortest geodesic path” definition, i.e., the intermediate domains along the shortest geodesic path between the two extreme domains can play a better bridging role, we propose two properties that these intermediate domains should satisfy. To ensure these two properties to better characterize appropriate intermediate domains, we enforce the bridge losses on intermediate domains' prediction space and feature space, and enforce a diversity loss on the two domain factors. The bridge losses aim at guiding the distribution of appropriate intermediate domains to keep the right distance to the source and target domains. The diversity loss serves as a regularization to prevent the generated intermediate domains from being over-fitting to either of the source and target domains. Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks, and the mAP gain is up to 7.7% on the challenging MSMT17 benchmark. Code is available at https://github.com/SikaStar/IDM.
U2 - 10.1109/ICCV48922.2021.01165
DO - 10.1109/ICCV48922.2021.01165
M3 - Conference contribution/Paper
AN - SCOPUS:85119117036
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 11844
EP - 11854
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 11 October 2021 through 17 October 2021
ER -