Home > Research > Publications & Outputs > Improving forecasting by estimating time series...

Electronic data


Text available via DOI:

View graph of relations

Improving forecasting by estimating time series structural components across multiple frequencies

Research output: Contribution to Journal/MagazineJournal articlepeer-review

<mark>Journal publication date</mark>04/2014
<mark>Journal</mark>International Journal of Forecasting
Issue number2
Number of pages12
Pages (from-to)291-302
Publication StatusPublished
<mark>Original language</mark>English


Identifying the appropriate time series model to achieve good forecasting accuracy is a challenging task. We propose a novel algorithm that aims to mitigate the importance of model selection, while increasing accuracy. From the original time series, using temporal aggregation, multiple time series are constructed. These derivative series highlight different aspects of the original data, as temporal aggregation helps in strengthening or attenuating the signals of different time series components. In each series the appropriate exponential smoothing method is fitted and its respective time series components are forecasted. Subsequently, the time series components from each aggregation level are combined, and then used to construct the final forecast. This approach achieves better estimation of the different time series components, through temporal aggregation, and mitigates the importance of model selection through forecast combination. Empirical evaluation of the proposed framework demonstrates significant improvements in forecasting accuracy, especially for long-term forecasts.

Bibliographic note

The final, definitive version of this article has been published in the Journal, International Journal of Forecasting 30 (2), 2014, © ELSEVIER.