Home > Research > Publications & Outputs > In silico design of knowledge-based Plasmodium ...

Electronic data

  • Accepted author manuscript

    Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Molecular Graphics and Modelling. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Molecular Graphics and Modelling, 78, 2017 DOI: 10.1016/j.jmgm.2017.10.004

    Accepted author manuscript, 377 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

In silico design of knowledge-based Plasmodium falciparum epitope ensemble vaccines

Research output: Contribution to journalJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>11/2017
<mark>Journal</mark>Journal of Molecular Graphics and Modelling
Volume78
Number of pages11
Pages (from-to)195-205
Publication StatusPublished
Early online date12/10/17
<mark>Original language</mark>English

Abstract

Abstract Malaria is a global health burden, and a major cause of mortality and morbidity in Africa. Here we designed a putative malaria epitope ensemble vaccine by selecting an optimal set of pathogen epitopes. From the IEDB database, 584 experimentally-verified CD8+ epitopes and 483 experimentally-verified CD4+ epitopes were collected; 89% of which were found in 8 proteins. Using the PVS server, highly conserved epitopes were identified from variability analysis of multiple alignments of Plasmodium falciparum protein sequences. The allele-dependent binding of epitopes was then assessed using IEDB analysis tools, from which the population protection coverage of single and combined epitopes was estimated. Ten conserved epitopes from four well-studied antigens were found to have a coverage of 97.9% of the world population: 7 CD8+ T cell epitopes (LLMDCSGSI, FLIFFDLFLV, LLACAGLAYK, TPYAGEPAPF, LLACAGLAY, SLKKNSRSL, and NEVVVKEEY) and 3 CD4+ T cell epitopes (MRKLAILSVSSFLFV, KSKYKLATSVLAGLL and GLAYKFVVPGAATPYE). The addition of four heteroclitic peptides − single point mutated epitopes − increased HLA binding affinity and raised the predicted world population coverage above 99%.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Journal of Molecular Graphics and Modelling. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Molecular Graphics and Modelling, 78, 2017 DOI: 10.1016/j.jmgm.2017.10.004