Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Infrared Spectroscopy of Urine for the Non-Invasive Detection of Endometrial Cancer
AU - Ramirez, Carlos A. Meza
AU - Stringfellow, Helen
AU - Naik, Raj
AU - Crosbie, Emma J.
AU - Paraskevaidi, Maria
AU - Rehman, Ihtesham U.
AU - Martin-Hirsch, Pierre
PY - 2022/10/13
Y1 - 2022/10/13
N2 - Current triage for women with post-menopausal bleeding (PMB) to diagnose endometrial cancer rely on specialist referral for intimate tests to sequentially image, visualise and sample the endometrium. A point-of-care non-invasive triage tool with an instant readout could provide immediate reassurance for low-risk symptomatic women, whilst fast-tracking high-risk women for urgent intrauterine investigations. This study assessed the potential for infrared (IR) spectroscopy and attenuated total reflection (ATR) technology coupled with chemometric analysis of the resulting spectra for endometrial cancer detection in urine samples. Standardised urine collection and processing protocols were developed to ensure spectroscopic differences between cases and controls reflected cancer status. Urine spectroscopy distinguished endometrial cancer (n = 109) from benign gynaecological conditions (n = 110) with a sensitivity of 98% and specificity of 97%. If confirmed in subsequent low prevalence studies embedded in PMB clinics, this novel endometrial cancer detection tool could transform clinical practice by accurately selecting women with malignant pathology for urgent diagnostic work up whilst safely reassuring those without.
AB - Current triage for women with post-menopausal bleeding (PMB) to diagnose endometrial cancer rely on specialist referral for intimate tests to sequentially image, visualise and sample the endometrium. A point-of-care non-invasive triage tool with an instant readout could provide immediate reassurance for low-risk symptomatic women, whilst fast-tracking high-risk women for urgent intrauterine investigations. This study assessed the potential for infrared (IR) spectroscopy and attenuated total reflection (ATR) technology coupled with chemometric analysis of the resulting spectra for endometrial cancer detection in urine samples. Standardised urine collection and processing protocols were developed to ensure spectroscopic differences between cases and controls reflected cancer status. Urine spectroscopy distinguished endometrial cancer (n = 109) from benign gynaecological conditions (n = 110) with a sensitivity of 98% and specificity of 97%. If confirmed in subsequent low prevalence studies embedded in PMB clinics, this novel endometrial cancer detection tool could transform clinical practice by accurately selecting women with malignant pathology for urgent diagnostic work up whilst safely reassuring those without.
KW - Cancer Research
KW - Oncology
U2 - 10.3390/cancers14205015
DO - 10.3390/cancers14205015
M3 - Journal article
VL - 14
JO - Cancers
JF - Cancers
SN - 2072-6694
IS - 20
M1 - 5015
ER -