Final published version
Licence: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Insights Into Lunar Basaltic Volcanism From Mare Domes Superposed by Ring‐Moat Dome Structures (RMDSs) in Mare Tranquillitatis
AU - Zhang, Feng
AU - Head, James W.
AU - Wilson, Lionel
AU - Meng, Yibo
AU - Wӧhler, Christian
AU - Guo, Dijun
AU - Niu, Shengli
AU - Bugiolacchi, Roberto
AU - Qiao, Le
AU - Dang, Yanan
AU - Liu, Yang
AU - Zou, Yongliao
PY - 2024/8/31
Y1 - 2024/8/31
N2 - Mare domes (interpreted to be a type of shield volcano) represent one important endmember of a variety of volcanic edifices occurring across the volcanic plains on the Moon, whereas Ring‐Moat Dome Structures (RMDSs) are interpreted to reflect the thermodynamic behavior of plain‐forming mare flows during their emplacement and cooling. A comprehensive study of the direct association between mare domes and RMDSs can not only provide deep insights into their formation mechanisms but also yield key information on the nature of mantle sources. We characterized a total of 200 mare domes and more than 6,400 RMDSs within Mare Tranquillitatis using multiple sets of imagery and topography data. RMDS‐bearing domes (80 out of 200) are on average larger than those hosting no RMDSs (average diameter 10.2 vs. 5.5 km) and have lower height/diameter (H/D) ratios (0.01 vs. 0.02) and flank slopes (1.2° vs. 2°). We attribute the presence of RMDSs on some domes to be due to relatively higher effusion rates forming longer thinner flows, producing favorable conditions for the formation of RMDSs. The average diameter of the RMDSs on mare domes (226 m, n = 1,027) appears to be slightly smaller than those located in mare plains (256 m, n = 527). This may be due to slope effects and that the relatively thicker off‐dome part of flows undergoes a relatively higher degree inflation process, producing slightly larger RMDSs. We adapt the RMDS‐formation theoretical model to shallow subcrustal magma reservoir model to account for the Tranquillitatis dome‐RMDS associations.
AB - Mare domes (interpreted to be a type of shield volcano) represent one important endmember of a variety of volcanic edifices occurring across the volcanic plains on the Moon, whereas Ring‐Moat Dome Structures (RMDSs) are interpreted to reflect the thermodynamic behavior of plain‐forming mare flows during their emplacement and cooling. A comprehensive study of the direct association between mare domes and RMDSs can not only provide deep insights into their formation mechanisms but also yield key information on the nature of mantle sources. We characterized a total of 200 mare domes and more than 6,400 RMDSs within Mare Tranquillitatis using multiple sets of imagery and topography data. RMDS‐bearing domes (80 out of 200) are on average larger than those hosting no RMDSs (average diameter 10.2 vs. 5.5 km) and have lower height/diameter (H/D) ratios (0.01 vs. 0.02) and flank slopes (1.2° vs. 2°). We attribute the presence of RMDSs on some domes to be due to relatively higher effusion rates forming longer thinner flows, producing favorable conditions for the formation of RMDSs. The average diameter of the RMDSs on mare domes (226 m, n = 1,027) appears to be slightly smaller than those located in mare plains (256 m, n = 527). This may be due to slope effects and that the relatively thicker off‐dome part of flows undergoes a relatively higher degree inflation process, producing slightly larger RMDSs. We adapt the RMDS‐formation theoretical model to shallow subcrustal magma reservoir model to account for the Tranquillitatis dome‐RMDS associations.
KW - volcanism
KW - ring‐moat dome structure
KW - Moon
KW - mare dome
KW - Mare Tranquillitatis
U2 - 10.1029/2023je007969
DO - 10.1029/2023je007969
M3 - Journal article
VL - 129
JO - Journal of Geophysical Research: Planets
JF - Journal of Geophysical Research: Planets
SN - 2169-9100
IS - 8
M1 - e2023JE007969
ER -