Home > Research > Publications & Outputs > In-situ Speciation of Ni and Zn in Freshwaters:...
View graph of relations

In-situ Speciation of Ni and Zn in Freshwaters: Comparison Between DGT Measurements and Speciation Models.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

In-situ Speciation of Ni and Zn in Freshwaters: Comparison Between DGT Measurements and Speciation Models. / Zhang, Hao.
In: Environmental Science and Technology, Vol. 38, No. 5, 03.2004, p. 1421-1427.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Zhang H. In-situ Speciation of Ni and Zn in Freshwaters: Comparison Between DGT Measurements and Speciation Models. Environmental Science and Technology. 2004 Mar;38(5):1421-1427. doi: 10.1021/es034654u

Author

Zhang, Hao. / In-situ Speciation of Ni and Zn in Freshwaters: Comparison Between DGT Measurements and Speciation Models. In: Environmental Science and Technology. 2004 ; Vol. 38, No. 5. pp. 1421-1427.

Bibtex

@article{b95c74771878483a90ba86617d23e3d0,
title = "In-situ Speciation of Ni and Zn in Freshwaters: Comparison Between DGT Measurements and Speciation Models.",
abstract = "The technique of DGT (diffusive gradients in thin films) was used for the first time to measure in situ the distribution of Zn and Ni between inorganic species and complexes with fulvic and humic acids in natural waters. With DGT, metals are bound to a resin embedded in a layer of hydrogel after diffusive transport through an adjacent layer of hydrogel. The metal concentrations in the waters can be quantified using simple diffusion equations. By using devices with hydrogels of different pore size, large and small complex species were discriminated. Inorganic species diffuse freely through all gels, but larger organic complexes with fulvic and humic acids diffuse less freely through more restricted gels (gels with smaller pore size). Systematic differences between DGT devices containing gels of different pore size were obtained. Their calibration for the diffusion of fulvic and humic complexes allowed calculation of the concentrations of labile inorganic (Zn, 34.6 ± 2.5 nM; Ni, 23.5 ± 0.9 nM) and labile organic (Zn, 43.1 ± 2.9 nM; Ni, 11.2 ± 0.7 nM) complexes. The concentration of Zn measured by anodic stripping voltammetry in samples returned to the laboratory lay between the DGT-measured inorganic concentration and the total dissolved concentration, consistent with partial measurement of organic complexes of Zn. The speciation model WHAM successfully predicted the species distribution of Ni, Zn, and Cu, provided that competitive binding by Fe(III) was considered. Using the speciation models WHAM and ECOSAT, free ion activities of Zn and Ni were calculated from (1) the total inorganic species measured by DGT and (2) the total dissolved species and dissolved organic carbon. The calculations confirmed the good model predictions of metal-humic binding but highlighted problems with default databases used for the speciation of inorganic components.",
author = "Hao Zhang",
note = "The paper used novel sets of diffusion layers to provide the first fully quantitative in-situ speciation measurements of partially complexed metals, such as Ni and Zn, in a freshwater systems. It provided the first real test of the predictive capability of widely used speciation models in a field situation. RAE_import_type : Journal article RAE_uoa_type : Earth Systems and Environmental Sciences",
year = "2004",
month = mar,
doi = "10.1021/es034654u",
language = "English",
volume = "38",
pages = "1421--1427",
journal = "Environmental Science and Technology",
issn = "0013-936X",
publisher = "American Chemical Society",
number = "5",

}

RIS

TY - JOUR

T1 - In-situ Speciation of Ni and Zn in Freshwaters: Comparison Between DGT Measurements and Speciation Models.

AU - Zhang, Hao

N1 - The paper used novel sets of diffusion layers to provide the first fully quantitative in-situ speciation measurements of partially complexed metals, such as Ni and Zn, in a freshwater systems. It provided the first real test of the predictive capability of widely used speciation models in a field situation. RAE_import_type : Journal article RAE_uoa_type : Earth Systems and Environmental Sciences

PY - 2004/3

Y1 - 2004/3

N2 - The technique of DGT (diffusive gradients in thin films) was used for the first time to measure in situ the distribution of Zn and Ni between inorganic species and complexes with fulvic and humic acids in natural waters. With DGT, metals are bound to a resin embedded in a layer of hydrogel after diffusive transport through an adjacent layer of hydrogel. The metal concentrations in the waters can be quantified using simple diffusion equations. By using devices with hydrogels of different pore size, large and small complex species were discriminated. Inorganic species diffuse freely through all gels, but larger organic complexes with fulvic and humic acids diffuse less freely through more restricted gels (gels with smaller pore size). Systematic differences between DGT devices containing gels of different pore size were obtained. Their calibration for the diffusion of fulvic and humic complexes allowed calculation of the concentrations of labile inorganic (Zn, 34.6 ± 2.5 nM; Ni, 23.5 ± 0.9 nM) and labile organic (Zn, 43.1 ± 2.9 nM; Ni, 11.2 ± 0.7 nM) complexes. The concentration of Zn measured by anodic stripping voltammetry in samples returned to the laboratory lay between the DGT-measured inorganic concentration and the total dissolved concentration, consistent with partial measurement of organic complexes of Zn. The speciation model WHAM successfully predicted the species distribution of Ni, Zn, and Cu, provided that competitive binding by Fe(III) was considered. Using the speciation models WHAM and ECOSAT, free ion activities of Zn and Ni were calculated from (1) the total inorganic species measured by DGT and (2) the total dissolved species and dissolved organic carbon. The calculations confirmed the good model predictions of metal-humic binding but highlighted problems with default databases used for the speciation of inorganic components.

AB - The technique of DGT (diffusive gradients in thin films) was used for the first time to measure in situ the distribution of Zn and Ni between inorganic species and complexes with fulvic and humic acids in natural waters. With DGT, metals are bound to a resin embedded in a layer of hydrogel after diffusive transport through an adjacent layer of hydrogel. The metal concentrations in the waters can be quantified using simple diffusion equations. By using devices with hydrogels of different pore size, large and small complex species were discriminated. Inorganic species diffuse freely through all gels, but larger organic complexes with fulvic and humic acids diffuse less freely through more restricted gels (gels with smaller pore size). Systematic differences between DGT devices containing gels of different pore size were obtained. Their calibration for the diffusion of fulvic and humic complexes allowed calculation of the concentrations of labile inorganic (Zn, 34.6 ± 2.5 nM; Ni, 23.5 ± 0.9 nM) and labile organic (Zn, 43.1 ± 2.9 nM; Ni, 11.2 ± 0.7 nM) complexes. The concentration of Zn measured by anodic stripping voltammetry in samples returned to the laboratory lay between the DGT-measured inorganic concentration and the total dissolved concentration, consistent with partial measurement of organic complexes of Zn. The speciation model WHAM successfully predicted the species distribution of Ni, Zn, and Cu, provided that competitive binding by Fe(III) was considered. Using the speciation models WHAM and ECOSAT, free ion activities of Zn and Ni were calculated from (1) the total inorganic species measured by DGT and (2) the total dissolved species and dissolved organic carbon. The calculations confirmed the good model predictions of metal-humic binding but highlighted problems with default databases used for the speciation of inorganic components.

U2 - 10.1021/es034654u

DO - 10.1021/es034654u

M3 - Journal article

VL - 38

SP - 1421

EP - 1427

JO - Environmental Science and Technology

JF - Environmental Science and Technology

SN - 0013-936X

IS - 5

ER -