Rights statement: This is the author’s version of a work that was accepted for publication in Physical Communication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Physical Communication, 53, 2022 DOI: 10.1016/j.phycom.2022.101744
Accepted author manuscript, 440 KB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Intelligent radio resource management in reconfigurable IRS-enabled NOMA networks
AU - Basharat, S.
AU - Pervaiz, H.
AU - Hassan, S.A.
AU - Ansari, R.I.
AU - Jung, H.
AU - Dev, K.
AU - Huang, G.
N1 - This is the author’s version of a work that was accepted for publication in Physical Communication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Physical Communication, 53, 2022 DOI: 10.1016/j.phycom.2022.101744
PY - 2022/8/31
Y1 - 2022/8/31
N2 - Intelligent reflecting surfaces (IRSs) are anticipated to provide reconfigurable propagation environment for next generation communication systems. In this paper, we investigate a downlink IRS-aided multi-carrier (MC) non-orthogonal multiple access (NOMA) system, where the IRS is deployed to especially assist the blocked users to establish communication with the base station (BS). To maximize the system sum rate under network quality-of-service (QoS), rate fairness and successive interference cancellation (SIC) constraints, we formulate a problem for joint optimization of IRS elements, sub-channel assignment and power allocation. The formulated problem is mixed non-convex. Therefore, a novel three stage algorithm is proposed for the optimization of IRS elements, sub-channel assignment and power allocation. First, the IRS elements are optimized using the bisection method based iterative algorithm. Then, the sub-channel assignment problem is solved using one-to-one stable matching algorithm. Finally, the power allocation problem is solved under the given sub-channel and optimal number of IRS elements using Lagrangian dual-decomposition method based on Lagrangian multipliers. Moreover, in an effort to demonstrate the low-complexity of the proposed resource allocation scheme, we provide the complexity analysis of the proposed algorithms. The simulated results illustrate the various factors that impact the optimal number of IRS elements and the superiority of the proposed resource allocation approach in terms of network sum rate and user fairness. Furthermore, we analyze the proposed approach against a new performance metric called computational efficiency (CE).
AB - Intelligent reflecting surfaces (IRSs) are anticipated to provide reconfigurable propagation environment for next generation communication systems. In this paper, we investigate a downlink IRS-aided multi-carrier (MC) non-orthogonal multiple access (NOMA) system, where the IRS is deployed to especially assist the blocked users to establish communication with the base station (BS). To maximize the system sum rate under network quality-of-service (QoS), rate fairness and successive interference cancellation (SIC) constraints, we formulate a problem for joint optimization of IRS elements, sub-channel assignment and power allocation. The formulated problem is mixed non-convex. Therefore, a novel three stage algorithm is proposed for the optimization of IRS elements, sub-channel assignment and power allocation. First, the IRS elements are optimized using the bisection method based iterative algorithm. Then, the sub-channel assignment problem is solved using one-to-one stable matching algorithm. Finally, the power allocation problem is solved under the given sub-channel and optimal number of IRS elements using Lagrangian dual-decomposition method based on Lagrangian multipliers. Moreover, in an effort to demonstrate the low-complexity of the proposed resource allocation scheme, we provide the complexity analysis of the proposed algorithms. The simulated results illustrate the various factors that impact the optimal number of IRS elements and the superiority of the proposed resource allocation approach in terms of network sum rate and user fairness. Furthermore, we analyze the proposed approach against a new performance metric called computational efficiency (CE).
KW - Intelligent reflecting surface
KW - Non-orthogonal multiple access
KW - Optimization
KW - Resource allocation
KW - Stable matching
U2 - 10.1016/j.phycom.2022.101744
DO - 10.1016/j.phycom.2022.101744
M3 - Journal article
VL - 53
JO - Physical Communication
JF - Physical Communication
SN - 1874-4907
M1 - 101744
ER -