Home > Research > Publications & Outputs > Interpreting predictive maps of disease

Electronic data

  • 397_1052_1_SM

    Final published version, 2.44 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Interpreting predictive maps of disease: highlighting the pitfalls of distribution models in epidemiology

Research output: Contribution to journalJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>2014
<mark>Journal</mark>Geospatial Health
Issue number1
Volume9
Number of pages10
Pages (from-to)237-246
Publication StatusPublished
<mark>Original language</mark>English

Abstract

The application of spatial modelling to epidemiology has increased significantly over the past decade, delivering enhanced understanding of the environmental and climatic factors affecting disease distributions and providing spatially continuous representations of disease risk (predictive maps). These outputs provide significant information for disease control programmes, allowing spatial targeting and tailored interventions. However, several factors (e.g. sampling protocols or temporal disease spread) can influence predictive mapping outputs. This paper proposes a conceptual framework which defines several scenarios and their potential impact on resulting predictive outputs, using simulated data to provide an exemplar. It is vital that researchers recognise these scenarios and their influence on predictive models and their outputs, as a failure to do so may lead to inaccurate interpretation of predictive maps. As long as these considerations are kept in mind, predictive mapping will continue to contribute significantly to epidemiological research and disease control planning.

Bibliographic note

M1 - 1