Home > Research > Publications & Outputs > Investigation of stability, dispersion, and the...

Text available via DOI:

View graph of relations

Investigation of stability, dispersion, and thermal conductivity of functionalized multi-walled carbon nanotube based nanofluid: 5th UTP-UMP-UAF Symposium on Energy Systems 2019, SES 2019

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

  • O.A. Hussein
  • K. Habib
  • M. Nasif
  • R. Saidur
  • A.S. Muhsan


In the attempt of preparing multi-walled carbon nanotube (MWCNTs), covalent functionalisation (CF-MWCNTs) were applied. The stable thermal conductivity was measured as a function of temperature. A number of techniques, such as FTIR, FESEM and UV-vis spectrophotometer were employed to characterise both dispersion stability and morphology of functionalised materials. By using ultrasonic test time, the highest stability of nanofluids was achieved at 60 minutes. As a result, the thermal conductivity displayed by CF-MWCNTs was higher than distilled water. In conclusion, improvement in thermal conductivity and stability displayed by CF-MWCNTs was higher, while the best thermal conductivity improvement was recorded at 31%. © 2020 Published under licence by IOP Publishing Ltd.

Bibliographic note

Conference code: 161025 Export Date: 9 July 2020 References: Choi, S.E., Journal of Chemical and Engineering Data, 8, pp. 281-285; Solangi, K.H., Kazi, S.N., Luhur, M.R., Badarudin, A., Amiri, A., Sadri, R., (2015) Energy; Hussain, O.A., Salem, T.K., (2017) J Adv Technol Eng Res., 2; Zeinali, H.S., Fallahi, M., Shanbedi, M., Amiri, A., (2016) Heat Mass Transf, 52 (1), pp. 85-93; Murshed, S.M.S., Leong, K.C., Yang, C., (2005) Int J Therm Sci, 44 (4), pp. 367-373; Yarmand, H., Ahmadi, G., Gharehkhani, S., Kazi, S.N., Safaei, M.R., Alehashem, M.S., (2014) Entropy, 16 (11), pp. 6116-6132; Azizi, Z., Alamdari, A., Malayeri, M.R., (2015) Energy Convers Manag, 101, pp. 515-524; Ding, Y., Alias, H., Wen, D., Williams, R.A., (2006) Int J Heat Mass Transf, 49 (1-2), pp. 240-250; Askari, S., Lotfi, R., Seifkordi, A., Rashidi, A.M., Koolivand, H., (2015) Energy Convers Manag, 109, pp. 10-18; Yu, W., Xie, H., Bao, D., (2010) Nanotechnology, 21 (5), p. 055705; Chang, G.L., Rhee, K., (2014) J Mat Scie, 49 (4), pp. 1506-1511; Amiri, A., Sadri, R., Shanbedi, M., Ahmadi, G., Chew, B.T., Kazi, S.N., (2015) Energy Convers Manag, 12, p. 051; Yarmand, H., Gharehkhani, S., Kazi, S.N., Sadeghinezhad, E., Safaei, M.R., (2014) Sci World J; Khoshvaght-Aliabadi, M., (2014) Energy Convers Manag, 88, pp. 96-105; Behroyan, I., Ganesan, P., He, S., Sivasankaran, S., (2015) Int Commun Heat Mass Transf, 67, pp. 163-172; Ma, S., Saidur, R., Hassani, S., Said, Z., Mekhilef, S., (2015) Energy Convers Manag, 9, p. 009; Sus, C., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A., (2001) Appl Phys Lett, 79 (14), pp. 2252-2254; Das, S.K., Putra, N., Thiesen, P., Roetzel, W., (2003) J Heat Transfer, 125 (4), p. 567; Solangi, K.H., Kazi, S.N., Luhur, M.R., Badarudin, A., Amiri, A., Sadri, R., Zubir, M.N., Teng, K.H., (2015) Energy, 89, pp. 1065-1086; Amiri, A., Sadat Alehashem, M., Kazi, S.N., Shanbedi, M., Ahmadi, G., Sadri, R., (2015) RSC Adv, 5 (45), pp. 35425-35434; Zare, Zardini, H., Amiri, A., Shanbedi, M., Taheri, Kafrani, A., Kazi, S.N., Razmjou, A., (2015) Journal of Biomedical Materials Research Part A 1, 103 (9), pp. 2959-2965; Halelfadl, S., Maré, T., Estellé, P., (2014) Experimental Thermal and Fluid Scienc, 53, pp. 104-110