Home > Research > Publications & Outputs > Iterative kernel principal component analysis f...
View graph of relations

Iterative kernel principal component analysis for image modeling

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>2005
<mark>Journal</mark>IEEE Transactions on Pattern Analysis and Machine Intelligence
Issue number9
Volume27
Number of pages16
Pages (from-to)1351-1366
Publication StatusPublished
<mark>Original language</mark>English

Abstract

In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution and denoising performance are comparable to existing methods.