Home > Research > Publications & Outputs > Land cover change from national to global scales

Electronic data

Text available via DOI:

View graph of relations

Land cover change from national to global scales: A spatiotemporal assessment of trajectories, transitions and drivers

Research output: ThesisDoctoral Thesis

Published
Publication date2021
QualificationPhD
Awarding Institution
Supervisors/Advisors
Publisher
  • Lancaster University
<mark>Original language</mark>English

Abstract

Changes in global land cover (LC) have significant consequences for global environmental change, impacting the sustainability of biogeochemical cycles, ecosystem services, biodiversity, and food security. Different forms of LC change have taken place across the world in recent decades due to a combination of natural and anthropogenic drivers, however, the types of change and rates of change have traditionally been hard to quantify. This thesis exploits the properties of the recently released ESA-CCI-LC product – an internally consistent, high-resolution annual time-series of global LC extending from 1992 to 2018. Specifically, this thesis uses a combination of trajectories and
transition maps to quantify LC changes over time at national, continental and global scales, in order to develop a deeper understanding of what, where and when significant changes in LC have taken place and relates these to natural and anthropogenic drivers. This thesis presents three analytical chapters that contribute to achieving the objectives and the overarching aim of the thesis. The first analytical chapter initially focuses on the Nile Delta region of Egypt, one of the most densely populated and rapidly urbanising regions globally, to quantify historic rates of urbanisation across the fertile agricultural land, before modelling a series of alternative futures in which these lands are largely protected from future urban expansion. The results show that 74,600 hectares of fertile agricultural land in the Nile Delta (Old Lands) was lost to urban expansion between 1992 and 2015. Furthermore, a scenario that encouraged urban expansion into the desert and adjacent to areas of existing high population density could be achieved, hence preserving large areas of fertile
agricultural land within the Nile Delta. The second analytical chapter goes on to examine LC changes across sub-Saharan Africa (SSA), a complex and diverse environment, through the joint lenses of political regions and ecoregions, differentiating between natural and anthropogenic signals of change
and relating to likely drivers. The results reveal key LC change processes at a range of spatial scales, and identify hotspots of LC change. The major five key LC change processes were: (i) “gain of dry forests” covered the largest extent and was distributed across the whole of SSA; (ii) “greening of deserts” found adjacent to desert areas (e.g., the Sahel belt); (iii) “loss of tree-dominated savanna”
extending mainly across South-eastern Africa; (iv) “loss of shrub-dominated savanna” stretching across West Africa, and “loss of tropical rainforests” unexpectedly covering the smallest extent, mainly in the DRC, West Africa and Madagascar. The final analytical chapter considers LC change at
the global scale, providing a comprehensive assessment of LC gains and losses, trajectories and transitions, including a complete assessment of associated uncertainties. This chapter highlights variability between continents and identifies locations of high LC dynamism, recognising global hotspots for sustainability challenges. At the national scale, the chapter identifies the top 10 countries with the largest percentages of forest loss and urban expansion globally. The results show that the majority of these countries have stabilised their forest losses, however, urban expansion was consistently on the rise in all countries. The thesis concludes with recommendations for future research as global LC products become more refined (spatially, temporally and thematically)
allowing deeper insights into the causes and consequences of global LC change to be determined.