Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Land use and soil factors affecting accumulation of phosphorus species in temperate soils
AU - Stutter, Marc
AU - Shand, Charles
AU - George, Timothy S.
AU - Blackwell, Martin S. A.
AU - Dixon, Liz
AU - Bol, Roland
AU - MacKay, Regina L.
AU - Richardson, Alan E.
AU - Condron, Leo M.
AU - Haygarth, Philip Matthew
PY - 2015/11
Y1 - 2015/11
N2 - Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449 g C kg− 1 and total P 295–3435 mg P kg− 1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520 mg P kg− 1), > monoester P (105–446 mg P kg− 1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842 mg P kg− 1) similar to monoesters (200–658 mg P kg− 1) > diesters (0–50 mg P kg− 1) and polyphosphates (1–78 mg P kg− 1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621 mg P kg− 1) and other diverse forms; principally diester (0–102 mg P kg− 1) and polyphosphates (0–108 mg P kg− 1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes.
AB - Data on the distribution of phosphorus (P) species in soils with differing land uses and properties are essential to understanding environmental P availability and how fertiliser inputs, cropping and grazing affect accumulation of soil inorganic P (Pi) and organic P (Po) forms. We examined thirty-two temperate soils (with soil organic C concentrations 12–449 g C kg− 1 and total P 295–3435 mg P kg− 1) for biogeochemical properties of soil C, reactive surfaces and P by common indices and 31P-NMR spectroscopy on NaOH–EDTA extracts for P species. Arable soil P was dominated by inorganic orthophosphate (276–2520 mg P kg− 1), > monoester P (105–446 mg P kg− 1). The limited diesters, polyphosphates and microbial P in arable soils suggest that cropping and fertiliser inputs limit ecosystem microbial functions and P diversity. Intensive grassland had inorganic orthophosphate concentrations (233–842 mg P kg− 1) similar to monoesters (200–658 mg P kg− 1) > diesters (0–50 mg P kg− 1) and polyphosphates (1–78 mg P kg− 1). As grazing became more extensive P in semi-natural systems was dominated by organic P, including monoesters (37–621 mg P kg− 1) and other diverse forms; principally diester (0–102 mg P kg− 1) and polyphosphates (0–108 mg P kg− 1). These were related to SOC, water extractable organic carbon (WEOC) and microbial P, suggesting strong microbially-mediated processes. A number of abiotic and biotic related processes appeared to control accumulation of different soil P species and gave considerable variability in forms and concentrations within land use groups. The implications are that to increase agricultural P efficiencies mechanisms to utilise both soil Pi and Po are needed and that specific management strategies may be required for site-specific circumstances of soil C and reactive properties such as Fe and Al complexes.
KW - Phosphorus species
KW - Soils
KW - Carbon
KW - Oxalate extractable Fe, Al
KW - Land use
U2 - 10.1016/j.geoderma.2015.03.020
DO - 10.1016/j.geoderma.2015.03.020
M3 - Journal article
VL - 257-258
SP - 29
EP - 39
JO - Geoderma
JF - Geoderma
SN - 0016-7061
ER -