Home > Research > Publications & Outputs > Landslide mapping from aerial photographs using...

Electronic data

  • Landslide mapping from aerialphotographs using change detection-based Markov rand_Final version

    Rights statement: This is the author’s version of a work that was accepted for publication in Remote Sensing of Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Remote Sensing of Environment, 187, 2016 DOI: 10.1016/j.rse.2016.10.008

    Accepted author manuscript, 13.3 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Landslide mapping from aerial photographs using change detection-based Markov random field

Research output: Contribution to journalJournal articlepeer-review

Published

Standard

Landslide mapping from aerial photographs using change detection-based Markov random field. / Li, Zhongbin; Shi, Wenzhong; Lu, Ping; Wang, Qunming; Miao, Zelang.

In: Remote Sensing of Environment, Vol. 187, 15.12.2016, p. 76-90.

Research output: Contribution to journalJournal articlepeer-review

Harvard

APA

Vancouver

Author

Li, Zhongbin ; Shi, Wenzhong ; Lu, Ping ; Wang, Qunming ; Miao, Zelang. / Landslide mapping from aerial photographs using change detection-based Markov random field. In: Remote Sensing of Environment. 2016 ; Vol. 187. pp. 76-90.

Bibtex

@article{faabd146164a4a3d9406f4764181377f,
title = "Landslide mapping from aerial photographs using change detection-based Markov random field",
abstract = "Landslide mapping (LM) is essential for hazard prevention, mitigation, and vulnerability assessment. Despite the great efforts over the past few years, there is room for improvement in its accuracy and efficiency. Existing LM is primarily achieved using field surveys or visual interpretation of remote sensing images. However, such methods are highly labor-intensive and time-consuming, particularly over large areas. Thus, in this paper a change detection-based Markov random field (CDMRF) method is proposed for near-automatic LM from aerial orthophotos. The proposed CDMRF is applied to a landslide-prone site with an area of approximately 40 km2 on Lantau Island, Hong Kong. Compared with the existing region-based level set evolution (RLSE), it has three main advantages: 1) it employs a more robust threshold method to generate the training samples; 2) it can identify landslides more accurately as it takes advantages of both the spectral and spatial contextual information of landslides; and 3) it needs little parameter tuning. Quantitative evaluation shows that it outperforms RLSE in the whole study area by almost 5.5% in Correctness and by 4% in Quality. To our knowledge, it is the first time CDMRF is used to LM from bitemporal aerial photographs. It is highly generic and has great potential for operational LM applications in large areas and also can be adapted for other sources of imagery data.",
author = "Zhongbin Li and Wenzhong Shi and Ping Lu and Qunming Wang and Zelang Miao",
note = "This is the author{\textquoteright}s version of a work that was accepted for publication in Remote Sensing of Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Remote Sensing of Environment, 187, 2016 DOI: 10.1016/j.rse.2016.10.008",
year = "2016",
month = dec,
day = "15",
doi = "10.1016/j.rse.2016.10.008",
language = "English",
volume = "187",
pages = "76--90",
journal = "Remote Sensing of Environment",
issn = "0034-4257",
publisher = "Elsevier Inc.",

}

RIS

TY - JOUR

T1 - Landslide mapping from aerial photographs using change detection-based Markov random field

AU - Li, Zhongbin

AU - Shi, Wenzhong

AU - Lu, Ping

AU - Wang, Qunming

AU - Miao, Zelang

N1 - This is the author’s version of a work that was accepted for publication in Remote Sensing of Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Remote Sensing of Environment, 187, 2016 DOI: 10.1016/j.rse.2016.10.008

PY - 2016/12/15

Y1 - 2016/12/15

N2 - Landslide mapping (LM) is essential for hazard prevention, mitigation, and vulnerability assessment. Despite the great efforts over the past few years, there is room for improvement in its accuracy and efficiency. Existing LM is primarily achieved using field surveys or visual interpretation of remote sensing images. However, such methods are highly labor-intensive and time-consuming, particularly over large areas. Thus, in this paper a change detection-based Markov random field (CDMRF) method is proposed for near-automatic LM from aerial orthophotos. The proposed CDMRF is applied to a landslide-prone site with an area of approximately 40 km2 on Lantau Island, Hong Kong. Compared with the existing region-based level set evolution (RLSE), it has three main advantages: 1) it employs a more robust threshold method to generate the training samples; 2) it can identify landslides more accurately as it takes advantages of both the spectral and spatial contextual information of landslides; and 3) it needs little parameter tuning. Quantitative evaluation shows that it outperforms RLSE in the whole study area by almost 5.5% in Correctness and by 4% in Quality. To our knowledge, it is the first time CDMRF is used to LM from bitemporal aerial photographs. It is highly generic and has great potential for operational LM applications in large areas and also can be adapted for other sources of imagery data.

AB - Landslide mapping (LM) is essential for hazard prevention, mitigation, and vulnerability assessment. Despite the great efforts over the past few years, there is room for improvement in its accuracy and efficiency. Existing LM is primarily achieved using field surveys or visual interpretation of remote sensing images. However, such methods are highly labor-intensive and time-consuming, particularly over large areas. Thus, in this paper a change detection-based Markov random field (CDMRF) method is proposed for near-automatic LM from aerial orthophotos. The proposed CDMRF is applied to a landslide-prone site with an area of approximately 40 km2 on Lantau Island, Hong Kong. Compared with the existing region-based level set evolution (RLSE), it has three main advantages: 1) it employs a more robust threshold method to generate the training samples; 2) it can identify landslides more accurately as it takes advantages of both the spectral and spatial contextual information of landslides; and 3) it needs little parameter tuning. Quantitative evaluation shows that it outperforms RLSE in the whole study area by almost 5.5% in Correctness and by 4% in Quality. To our knowledge, it is the first time CDMRF is used to LM from bitemporal aerial photographs. It is highly generic and has great potential for operational LM applications in large areas and also can be adapted for other sources of imagery data.

U2 - 10.1016/j.rse.2016.10.008

DO - 10.1016/j.rse.2016.10.008

M3 - Journal article

VL - 187

SP - 76

EP - 90

JO - Remote Sensing of Environment

JF - Remote Sensing of Environment

SN - 0034-4257

ER -