Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Legacy effects of nitrogen and phosphorus additions on vegetation and carbon stocks of upland heaths
AU - Van Paassen, Jose
AU - Britton, Andrea
AU - Mitchell, Ruth J
AU - Street, Lorna E.
AU - Johnson, David
AU - Coupar, Andrew
AU - Woodin, Sarah J.
PY - 2020/10/31
Y1 - 2020/10/31
N2 - Soil carbon (C) pools and plant community composition are regulated by nitrogen (N) and phosphorus (P) availability. Atmospheric N deposition impacts ecosystem C storage, but the direction of response varies between systems. Phosphorus limitation may constrain C storage response to N, hence P application to increase plant productivity and thus C sequestration has been suggested. We revisited a 23-yr-old field experiment where N and P had been applied to upland heath, a widespread habitat supporting large soil C stocks. At 10 yr after the last nutrient application we quantified long-term changes in vegetation composition and in soil and vegetation C and P stocks. Nitrogen addition, particularly when combined with P, strongly influenced vegetation composition, favouring grasses over Calluna vulgaris, and led to a reduction in vegetation C stocks. However, soil C stocks did not respond to nutrient treatments. We found 40% of the added P had accumulated in the soil. This study showed persistent effects of N and N + P on vegetation composition, whereas effects of P alone were small and showed recovery. We found no indication that P application could mitigate the effects of N on vegetation or increase C sequestration in this system.
AB - Soil carbon (C) pools and plant community composition are regulated by nitrogen (N) and phosphorus (P) availability. Atmospheric N deposition impacts ecosystem C storage, but the direction of response varies between systems. Phosphorus limitation may constrain C storage response to N, hence P application to increase plant productivity and thus C sequestration has been suggested. We revisited a 23-yr-old field experiment where N and P had been applied to upland heath, a widespread habitat supporting large soil C stocks. At 10 yr after the last nutrient application we quantified long-term changes in vegetation composition and in soil and vegetation C and P stocks. Nitrogen addition, particularly when combined with P, strongly influenced vegetation composition, favouring grasses over Calluna vulgaris, and led to a reduction in vegetation C stocks. However, soil C stocks did not respond to nutrient treatments. We found 40% of the added P had accumulated in the soil. This study showed persistent effects of N and N + P on vegetation composition, whereas effects of P alone were small and showed recovery. We found no indication that P application could mitigate the effects of N on vegetation or increase C sequestration in this system.
KW - long term
KW - nitrogen deposition
KW - nutrient cycling
KW - soil
KW - upland heath
KW - vegetation
U2 - 10.1111/nph.16671
DO - 10.1111/nph.16671
M3 - Journal article
VL - 228
SP - 226
EP - 237
JO - New Phytologist
JF - New Phytologist
SN - 1469-8137
IS - 1
ER -