Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Liquid scintillator-based neutron detector development
AU - Lavietes, Anthony
AU - Plenteda, Romano
AU - Mascarenhas, Nicholas
AU - Cronholm, L. Marie
AU - Aspinall, Michael
AU - Joyce, Malcolm
AU - Tomanin, Alice
AU - Peerani, Paolo
PY - 2012
Y1 - 2012
N2 - The IAEA, in collaboration with the Joint Research Center (Ispra, IT) and Hybrid Instruments (UK), is developing a liquid scintillator-based neutron coincidence counting system to address a number of safeguards applications. Interest in this technology is increasing with the advent of high-flashpoint, nonhazardous scintillating fluids coupled with significant advances in signal processing electronics. Together, these developments have provided the enabling technologies to allow liquid scintillators to be implemented outside of a laboratory environment. Another important aspect of this detector technology is that it can be used with the current installed infrastructure of safeguards assay instruments and data acquisition electronics. It is also an excellent candidate for the replacement of 3He-based systems in many applications. As such, a comparison to an existing 3He-based system will be presented to contrast the differences and benefits for several applications. This paper will describe the experiments and associated modeling activities engaged to carefully characterize the detection system and refine the models. The latest version of MCNPX-PoliMi Monte Carlo modeling code was used to address the specific requirements of liquid scintillators. Additionally, this development activity has driven the collaborative development with Hybrid Instruments of a high-performance pulse shape discriminator (PSD) unit. Specific applications will be described with particular emphasis on those in which liquid scintillators provide immediate benefit over traditional detection methods.
AB - The IAEA, in collaboration with the Joint Research Center (Ispra, IT) and Hybrid Instruments (UK), is developing a liquid scintillator-based neutron coincidence counting system to address a number of safeguards applications. Interest in this technology is increasing with the advent of high-flashpoint, nonhazardous scintillating fluids coupled with significant advances in signal processing electronics. Together, these developments have provided the enabling technologies to allow liquid scintillators to be implemented outside of a laboratory environment. Another important aspect of this detector technology is that it can be used with the current installed infrastructure of safeguards assay instruments and data acquisition electronics. It is also an excellent candidate for the replacement of 3He-based systems in many applications. As such, a comparison to an existing 3He-based system will be presented to contrast the differences and benefits for several applications. This paper will describe the experiments and associated modeling activities engaged to carefully characterize the detection system and refine the models. The latest version of MCNPX-PoliMi Monte Carlo modeling code was used to address the specific requirements of liquid scintillators. Additionally, this development activity has driven the collaborative development with Hybrid Instruments of a high-performance pulse shape discriminator (PSD) unit. Specific applications will be described with particular emphasis on those in which liquid scintillators provide immediate benefit over traditional detection methods.
U2 - 10.1109/NSSMIC.2012.6551100
DO - 10.1109/NSSMIC.2012.6551100
M3 - Conference contribution/Paper
AN - SCOPUS:84881603891
SN - 9781467320283
SP - 230
EP - 244
BT - 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
PB - IEEE
T2 - 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
Y2 - 29 October 2012 through 3 November 2012
ER -