Accepted author manuscript, 6.86 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - LLaFS++
T2 - Few-Shot Image Segmentation With Large Language Models
AU - Zhu, Lanyun
AU - Chen, Tianrun
AU - Ji, Deyi
AU - Xu, Peng
AU - Ye, Jieping
AU - Liu, Jun
PY - 2025/5/26
Y1 - 2025/5/26
N2 - Despite the rapid advancements in few-shot segmentation (FSS), most of existing methods in this domain are hampered by their reliance on the limited and biased information from only a small number of labeled samples. This limitation inherently restricts their capability to achieve sufficiently high levels of performance. To address this issue, this paper proposes a pioneering framework named LLaFS++, which, for the first time, applies large language models (LLMs) into FSS and achieves notable success. LLaFS++ leverages the extensive prior knowledge embedded by LLMs to guide the segmentation process, effectively compensating for the limited information contained in the few-shot labeled samples and thereby achieving superior results. To enhance the effectiveness of the text-based LLMs in FSS scenarios, we present several innovative and task-specific designs within the LLaFS++ framework. Specifically, we introduce an input instruction that allows the LLM to directly produce segmentation results represented as polygons, and propose a region-attribute corresponding table to simulate the human visual system and provide multi-modal guidance. We also synthesize pseudo samples and use curriculum learning for pretraining to augment data and achieve better optimization, and propose a novel inference method to mitigate potential oversegmentation hallucinations caused by the regional guidance information. Incorporating these designs, LLaFS++ constitutes an effective framework that achieves state-of-the-art results on multiple datasets including PASCAL-5 i, COCO-20 i, and FSS-1000. Our superior performance showcases the remarkable potential of applying LLMs to process few-shot vision tasks.
AB - Despite the rapid advancements in few-shot segmentation (FSS), most of existing methods in this domain are hampered by their reliance on the limited and biased information from only a small number of labeled samples. This limitation inherently restricts their capability to achieve sufficiently high levels of performance. To address this issue, this paper proposes a pioneering framework named LLaFS++, which, for the first time, applies large language models (LLMs) into FSS and achieves notable success. LLaFS++ leverages the extensive prior knowledge embedded by LLMs to guide the segmentation process, effectively compensating for the limited information contained in the few-shot labeled samples and thereby achieving superior results. To enhance the effectiveness of the text-based LLMs in FSS scenarios, we present several innovative and task-specific designs within the LLaFS++ framework. Specifically, we introduce an input instruction that allows the LLM to directly produce segmentation results represented as polygons, and propose a region-attribute corresponding table to simulate the human visual system and provide multi-modal guidance. We also synthesize pseudo samples and use curriculum learning for pretraining to augment data and achieve better optimization, and propose a novel inference method to mitigate potential oversegmentation hallucinations caused by the regional guidance information. Incorporating these designs, LLaFS++ constitutes an effective framework that achieves state-of-the-art results on multiple datasets including PASCAL-5 i, COCO-20 i, and FSS-1000. Our superior performance showcases the remarkable potential of applying LLMs to process few-shot vision tasks.
U2 - 10.1109/tpami.2025.3573609
DO - 10.1109/tpami.2025.3573609
M3 - Journal article
SP - 1
EP - 18
JO - IEEE Transactions on Pattern Analysis and Machine Intelligence
JF - IEEE Transactions on Pattern Analysis and Machine Intelligence
SN - 0162-8828
ER -