Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Low-Dispersive Leaky-Wave Antennas for mmWave Point-to-Point High-Throughput Communications
AU - Zetterstrom, Oskar
AU - Pucci, Elena
AU - Padilla, Pablo
AU - Wang, Lei
AU - Quevedo-Teruel, Oscar
PY - 2020/3/31
Y1 - 2020/3/31
N2 - In this article, we present two efficient leaky-wave antennas (LWAs) with stable radiation pattern, operating at 60 GHz. Both antennas exhibit attractive properties such as significantly reduced beam-squint, low loss, low sidelobes, high directivity, and simple manufacturing. The beam-squint of conventional LWAs is reduced by refracting the leaked waves in a dispersive lens and the low sidelobe levels are achieved by tapering the leakage rate along the aperture. Since the antennas are implemented in groove gap waveguide technology, the losses are low. The two antennas are different in terms of their asymmetric/symmetric leakage tapering with respect to the broadside direction. Both designs are optimized for low sidelobes, but since symmetry is enforced in one, the resulting performance in terms of sidelobes is suboptimal. However, in the symmetric design, multiple stable beams can be obtained, simultaneously or independently. Twenty percent bandwidth is obtained with less than ±0.5° beam-squint. In this frequency range, the gain is stable at 17 and 15 dBi for the asymmetric and symmetric designs, respectively. The designs are intended for point-to-point links in mmWave communication networks where low losses, directive beams, and low sidelobes are expected to be key features.
AB - In this article, we present two efficient leaky-wave antennas (LWAs) with stable radiation pattern, operating at 60 GHz. Both antennas exhibit attractive properties such as significantly reduced beam-squint, low loss, low sidelobes, high directivity, and simple manufacturing. The beam-squint of conventional LWAs is reduced by refracting the leaked waves in a dispersive lens and the low sidelobe levels are achieved by tapering the leakage rate along the aperture. Since the antennas are implemented in groove gap waveguide technology, the losses are low. The two antennas are different in terms of their asymmetric/symmetric leakage tapering with respect to the broadside direction. Both designs are optimized for low sidelobes, but since symmetry is enforced in one, the resulting performance in terms of sidelobes is suboptimal. However, in the symmetric design, multiple stable beams can be obtained, simultaneously or independently. Twenty percent bandwidth is obtained with less than ±0.5° beam-squint. In this frequency range, the gain is stable at 17 and 15 dBi for the asymmetric and symmetric designs, respectively. The designs are intended for point-to-point links in mmWave communication networks where low losses, directive beams, and low sidelobes are expected to be key features.
U2 - 10.1109/TAP.2019.2943437
DO - 10.1109/TAP.2019.2943437
M3 - Journal article
VL - 68
SP - 1322
EP - 1331
JO - IEEE Transactions on Antennas and Propagation
JF - IEEE Transactions on Antennas and Propagation
SN - 0018-926X
IS - 3
ER -