Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Magnetic characterisation of London's airborne nanoparticulate matter
AU - Muxworthy, A.R.
AU - Lam, C.
AU - Green, D.
AU - Cowan, A.
AU - Maher, B.A.
AU - Gonet, T.
PY - 2022/10/15
Y1 - 2022/10/15
N2 - Iron-bearing particulate matter produced by vehicle emissions is known to be toxic. To better quantify potential health risks, we have conducted the first magnetic study of a time-series of London's inhalable particulate matter (<10 μm, PM 10), captured by three monitoring stations in central London (Marylebone Road, Earl's Court Road and Oxford Street) through 2010 and 2012. We conducted room-temperature analysis on all the samples, and a limited number of samples were analysed at both high and low temperatures. The high-temperature measurements identified magnetite as the dominant magnetic phase. The low-temperature measurements revealed high numbers of nanoparticles, which, assuming magnetite, are in the grain-size range 1–4 nm. It is estimated that as much as ∼40% of the total magnetic signal at 10 K is from particles <4 nm, that are magnetically ‘invisible’ at room-temperature and are being routinely under-estimated in room temperature-based magnetic studies. From the low-temperature measurements, the total concentration of magnetite was estimated at ∼7.5%, significantly higher than previously reported. The room-temperature magnetic data were compared with other pollution data, e.g., NO X and PM 10, and meteorological data. Mass-dependent terms like the saturation magnetisation were found to display a strong correlation with NO X and PM 10, indicating a common source for these pollutants, i.e., vehicle emissions. Magnetic coercivity measurements, which are independent of abundance, and provide information on grain-size, were consistent across all three sampling localities, again suggesting a major dominant source. Relatively small variations in coercivity were correlated with meteorological events, e.g., temperature and precipitation, suggesting preferential removal of larger airborne grains, i.e., >50 nm.
AB - Iron-bearing particulate matter produced by vehicle emissions is known to be toxic. To better quantify potential health risks, we have conducted the first magnetic study of a time-series of London's inhalable particulate matter (<10 μm, PM 10), captured by three monitoring stations in central London (Marylebone Road, Earl's Court Road and Oxford Street) through 2010 and 2012. We conducted room-temperature analysis on all the samples, and a limited number of samples were analysed at both high and low temperatures. The high-temperature measurements identified magnetite as the dominant magnetic phase. The low-temperature measurements revealed high numbers of nanoparticles, which, assuming magnetite, are in the grain-size range 1–4 nm. It is estimated that as much as ∼40% of the total magnetic signal at 10 K is from particles <4 nm, that are magnetically ‘invisible’ at room-temperature and are being routinely under-estimated in room temperature-based magnetic studies. From the low-temperature measurements, the total concentration of magnetite was estimated at ∼7.5%, significantly higher than previously reported. The room-temperature magnetic data were compared with other pollution data, e.g., NO X and PM 10, and meteorological data. Mass-dependent terms like the saturation magnetisation were found to display a strong correlation with NO X and PM 10, indicating a common source for these pollutants, i.e., vehicle emissions. Magnetic coercivity measurements, which are independent of abundance, and provide information on grain-size, were consistent across all three sampling localities, again suggesting a major dominant source. Relatively small variations in coercivity were correlated with meteorological events, e.g., temperature and precipitation, suggesting preferential removal of larger airborne grains, i.e., >50 nm.
U2 - 10.1016/j.atmosenv.2022.119292
DO - 10.1016/j.atmosenv.2022.119292
M3 - Journal article
VL - 287
JO - Atmospheric Environment
JF - Atmospheric Environment
SN - 1352-2310
M1 - 119292
ER -