Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Mangrove species found in contrasting environments show differing phytohormonal responses to variation in soil bulk density
AU - Ola, A.
AU - Dodd, I.C.
AU - Albacete, A.
AU - Xiong, Y.
AU - Rasmussen, A.
AU - De Diego, N.
AU - Lovelock, C.E.
PY - 2024/7/31
Y1 - 2024/7/31
N2 - Background and aimsMangrove species respond to variation in soil bulk density (BD). However, very little is known about the regulatory mechanisms that trigger these responses.MethodsEndogenous concentrations of different phytohormones were measured in the roots of two mangrove species (Avicennia marina and Rhizophora stylosa) grown in low and high BD soils. The potential involvement of ethylene in regulating plant growth responses was tested by applying the ethylene biosynthesis inhibitors cobalt chloride (CoCl2) and aminoisobutyric acid (AIB).ResultsThe two mangrove species responded differently to variation in soil BD. High BD decreased root growth of R. stylosa, but not A. marina. Soil BD had no effect on root phytohormone levels in R. stylosa, but loose soils increased 1-aminocyclopropane-1-carboxylic acid whilst decreasing salicylic acid and gibberellin in A. marina. Applying ethylene inhibitors enhanced R. stylosa root growth, while increasing indole-3-acetic acid but decreasing isopentenyl adenine levels. In contrast, AIB inhibited A. marina root growth, while increasing trans-zeatin levels. Ethylene inhibitors affected salicylic acid levels in both species.ConclusionSalicylic acid is central to root growth responses to variation in BD in A. marina. Conversely, the interaction of ethylene and gibberellin drives responses in R. stylosa. Hormonal interactions involving ethylene potentially reflect the adaptations of the two species to differing conditions within the intertidal zone, with A. marina behaving like an aquatic species and R. stylosa behaving like a terrestrial species.
AB - Background and aimsMangrove species respond to variation in soil bulk density (BD). However, very little is known about the regulatory mechanisms that trigger these responses.MethodsEndogenous concentrations of different phytohormones were measured in the roots of two mangrove species (Avicennia marina and Rhizophora stylosa) grown in low and high BD soils. The potential involvement of ethylene in regulating plant growth responses was tested by applying the ethylene biosynthesis inhibitors cobalt chloride (CoCl2) and aminoisobutyric acid (AIB).ResultsThe two mangrove species responded differently to variation in soil BD. High BD decreased root growth of R. stylosa, but not A. marina. Soil BD had no effect on root phytohormone levels in R. stylosa, but loose soils increased 1-aminocyclopropane-1-carboxylic acid whilst decreasing salicylic acid and gibberellin in A. marina. Applying ethylene inhibitors enhanced R. stylosa root growth, while increasing indole-3-acetic acid but decreasing isopentenyl adenine levels. In contrast, AIB inhibited A. marina root growth, while increasing trans-zeatin levels. Ethylene inhibitors affected salicylic acid levels in both species.ConclusionSalicylic acid is central to root growth responses to variation in BD in A. marina. Conversely, the interaction of ethylene and gibberellin drives responses in R. stylosa. Hormonal interactions involving ethylene potentially reflect the adaptations of the two species to differing conditions within the intertidal zone, with A. marina behaving like an aquatic species and R. stylosa behaving like a terrestrial species.
U2 - 10.1007/s11104-024-06490-4
DO - 10.1007/s11104-024-06490-4
M3 - Journal article
VL - 500
SP - 417
EP - 430
JO - Plant and Soil
JF - Plant and Soil
SN - 0032-079X
ER -