Home > Research > Publications & Outputs > Measurement of colloid mobilization and redepos...

Links

Text available via DOI:

View graph of relations

Measurement of colloid mobilization and redeposition during drainage in quartz sand.

Research output: Contribution to journalJournal articlepeer-review

Published

Standard

Measurement of colloid mobilization and redeposition during drainage in quartz sand. / Bridge, Jonathan W.; Heathwaite, A. Louise; Banwart, Steven A.

In: Environmental Science and Technology, Vol. 43, No. 15, 01.08.2009, p. 5769-5775.

Research output: Contribution to journalJournal articlepeer-review

Harvard

Bridge, JW, Heathwaite, AL & Banwart, SA 2009, 'Measurement of colloid mobilization and redeposition during drainage in quartz sand.', Environmental Science and Technology, vol. 43, no. 15, pp. 5769-5775. https://doi.org/10.1021/es900616j

APA

Bridge, J. W., Heathwaite, A. L., & Banwart, S. A. (2009). Measurement of colloid mobilization and redeposition during drainage in quartz sand. Environmental Science and Technology, 43(15), 5769-5775. https://doi.org/10.1021/es900616j

Vancouver

Bridge JW, Heathwaite AL, Banwart SA. Measurement of colloid mobilization and redeposition during drainage in quartz sand. Environmental Science and Technology. 2009 Aug 1;43(15):5769-5775. https://doi.org/10.1021/es900616j

Author

Bridge, Jonathan W. ; Heathwaite, A. Louise ; Banwart, Steven A. / Measurement of colloid mobilization and redeposition during drainage in quartz sand. In: Environmental Science and Technology. 2009 ; Vol. 43, No. 15. pp. 5769-5775.

Bibtex

@article{6db10b4b7dc84d159fc7815541239ecc,
title = "Measurement of colloid mobilization and redeposition during drainage in quartz sand.",
abstract = "Movement of wetting and drying fronts through the vadose zone can mobilize and transport colloid particles but the mechanisms are not fully understood. We used mesoscale (mm−dm) fluorescence imaging to measure mobilization of 1.9 μm diameter carboxylate-latex microspheres during drainage in quartz sand. Experiments were performed at ionic strengths of 2−50 mM and drainage rates of 1.0−0.2 mL min−1. Colloids were mobilized and transported steadily at a sharp decrease in pore saturation marking the drying front. The mobilization rate varied directly with the initial immobile particle concentration. The mobilization rate constant varied inversely with ionic strength and directly with drainage rate. Peak mobile particle concentration at the drying front varied nonmonotonically, and the mobilization efficiency decreased with distance traveled by the drying front, at high ionic strengths. These findings constitute evidence for particle redeposition from the drying front as drainage progresses, which we propose is a key factor in the observed variations with ionic strength and drainage rate in the total number of particles removed during drainage. The measured outcomes of particle mobilization during a drainage event are sensitive to the distributions of immobile particles prior to drainage and dependent on the length scales over which the drainage event is observed.",
author = "Bridge, {Jonathan W.} and Heathwaite, {A. Louise} and Banwart, {Steven A.}",
year = "2009",
month = aug,
day = "1",
doi = "10.1021/es900616j",
language = "English",
volume = "43",
pages = "5769--5775",
journal = "Environmental Science and Technology",
issn = "0013-936X",
publisher = "American Chemical Society",
number = "15",

}

RIS

TY - JOUR

T1 - Measurement of colloid mobilization and redeposition during drainage in quartz sand.

AU - Bridge, Jonathan W.

AU - Heathwaite, A. Louise

AU - Banwart, Steven A.

PY - 2009/8/1

Y1 - 2009/8/1

N2 - Movement of wetting and drying fronts through the vadose zone can mobilize and transport colloid particles but the mechanisms are not fully understood. We used mesoscale (mm−dm) fluorescence imaging to measure mobilization of 1.9 μm diameter carboxylate-latex microspheres during drainage in quartz sand. Experiments were performed at ionic strengths of 2−50 mM and drainage rates of 1.0−0.2 mL min−1. Colloids were mobilized and transported steadily at a sharp decrease in pore saturation marking the drying front. The mobilization rate varied directly with the initial immobile particle concentration. The mobilization rate constant varied inversely with ionic strength and directly with drainage rate. Peak mobile particle concentration at the drying front varied nonmonotonically, and the mobilization efficiency decreased with distance traveled by the drying front, at high ionic strengths. These findings constitute evidence for particle redeposition from the drying front as drainage progresses, which we propose is a key factor in the observed variations with ionic strength and drainage rate in the total number of particles removed during drainage. The measured outcomes of particle mobilization during a drainage event are sensitive to the distributions of immobile particles prior to drainage and dependent on the length scales over which the drainage event is observed.

AB - Movement of wetting and drying fronts through the vadose zone can mobilize and transport colloid particles but the mechanisms are not fully understood. We used mesoscale (mm−dm) fluorescence imaging to measure mobilization of 1.9 μm diameter carboxylate-latex microspheres during drainage in quartz sand. Experiments were performed at ionic strengths of 2−50 mM and drainage rates of 1.0−0.2 mL min−1. Colloids were mobilized and transported steadily at a sharp decrease in pore saturation marking the drying front. The mobilization rate varied directly with the initial immobile particle concentration. The mobilization rate constant varied inversely with ionic strength and directly with drainage rate. Peak mobile particle concentration at the drying front varied nonmonotonically, and the mobilization efficiency decreased with distance traveled by the drying front, at high ionic strengths. These findings constitute evidence for particle redeposition from the drying front as drainage progresses, which we propose is a key factor in the observed variations with ionic strength and drainage rate in the total number of particles removed during drainage. The measured outcomes of particle mobilization during a drainage event are sensitive to the distributions of immobile particles prior to drainage and dependent on the length scales over which the drainage event is observed.

UR - http://www.scopus.com/inward/record.url?scp=68049145091&partnerID=8YFLogxK

U2 - 10.1021/es900616j

DO - 10.1021/es900616j

M3 - Journal article

VL - 43

SP - 5769

EP - 5775

JO - Environmental Science and Technology

JF - Environmental Science and Technology

SN - 0013-936X

IS - 15

ER -