Home > Research > Publications & Outputs > Measuring air quality for advocacy in Africa (MA3)

Links

Text available via DOI:

View graph of relations

Measuring air quality for advocacy in Africa (MA3): Feasibility and practicality of longitudinal ambient PM2.5 measurement using low-cost sensors

Research output: Contribution to journalJournal articlepeer-review

Published
  • B.I. Awokola
  • G. Okello
  • K.J. Mortimer
  • C.P. Jewell
  • A. Erhart
  • S. Semple
Close
Article number7243
<mark>Journal publication date</mark>3/10/2020
<mark>Journal</mark>International Journal of Environmental Research and Public Health
Issue number19
Volume17
Number of pages17
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Ambient air pollution in urban cities in sub-Saharan Africa (SSA) is an important public health problem with models and limited monitoring data indicating high concentrations of pollutants such as fine particulate matter (PM2.5). On most global air quality index maps, however, information about ambient pollution from SSA is scarce. We evaluated the feasibility and practicality of longitudinal measurements of ambient PM2.5 using low-cost air quality sensors (Purple Air-II-SD) across thirteen locations in seven countries in SSA. Devices were used to gather data over a 30-day period with the aim of assessing the efficiency of its data recovery rate and identifying challenges experienced by users in each location. The median data recovery rate was 94% (range: 72% to 100%). The mean 24 h concentration measured across all sites was 38 µg/m3 with the highest PM2.5 period average concentration of 91 µg/m3 measured in Kampala, Uganda and lowest concentrations of 15 µg/m3 measured in Faraja, The Gambia. Kampala in Uganda and Nnewi in Nigeria recorded the longest periods with concentrations >250µg/m3. Power outages, SD memory card issues, internet connectivity problems and device safety concerns were important challenges experienced when using Purple Air-II-SD sensors. Despite some operational challenges, this study demonstrated that it is reasonably practicable and feasible to establish a network of low-cost devices to provide data on local PM2.5 concentrations in SSA countries. Such data are crucially needed to raise public, societal and policymaker awareness about air pollution across SSA.