Home > Research > Publications & Outputs > Microbiological analysis of multi-level borehol...

Links

Text available via DOI:

View graph of relations

Microbiological analysis of multi-level borehole samples from a contaminated groundwater system

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Microbiological analysis of multi-level borehole samples from a contaminated groundwater system. / Pickup, R. W.; Rhodes, G.; Alamillo, M. L. et al.
In: Journal of Contaminant Hydrology, Vol. 53, No. 3-4, 15.12.2001, p. 269-284.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Pickup, RW, Rhodes, G, Alamillo, ML, Mallinson, HEH, Thornton, SF & Lerner, DN 2001, 'Microbiological analysis of multi-level borehole samples from a contaminated groundwater system', Journal of Contaminant Hydrology, vol. 53, no. 3-4, pp. 269-284. https://doi.org/10.1016/S0169-7722(01)00169-3

APA

Pickup, R. W., Rhodes, G., Alamillo, M. L., Mallinson, H. E. H., Thornton, S. F., & Lerner, D. N. (2001). Microbiological analysis of multi-level borehole samples from a contaminated groundwater system. Journal of Contaminant Hydrology, 53(3-4), 269-284. https://doi.org/10.1016/S0169-7722(01)00169-3

Vancouver

Pickup RW, Rhodes G, Alamillo ML, Mallinson HEH, Thornton SF, Lerner DN. Microbiological analysis of multi-level borehole samples from a contaminated groundwater system. Journal of Contaminant Hydrology. 2001 Dec 15;53(3-4):269-284. doi: 10.1016/S0169-7722(01)00169-3

Author

Pickup, R. W. ; Rhodes, G. ; Alamillo, M. L. et al. / Microbiological analysis of multi-level borehole samples from a contaminated groundwater system. In: Journal of Contaminant Hydrology. 2001 ; Vol. 53, No. 3-4. pp. 269-284.

Bibtex

@article{8a09cd38b6c44ab79e6c179a8764a4b4,
title = "Microbiological analysis of multi-level borehole samples from a contaminated groundwater system",
abstract = "A range of bacteriological, geochemical process-related and molecular techniques have been used to assess the microbial biodegradative potential in groundwater contaminated with phenol and other tar acids. The contaminant plume has travelled 500 m from the pollutant source over several decades. Samples were obtained from the plume using a multi-level sampler (MLS) positioned in two boreholes (boreholes 59 and 60) which vertically transected two areas of the plume. Activity of the microbial community, as represented by phenol degradation potential and ability to utilise a range of substrates, was found to be influenced by the plume. Phenol degradation potential appeared to be influenced more by the concentration of the contaminants than the total bacterial cell numbers. However, in the areas of highest phenol concentration, the depression of cell numbers clearly had an effect. The types of bacteria present were assessed by culture and DNA amplification by polymerase chain reaction (PCR). Bacterial groups or processes associated with major geochemical processes, such as methanogenesis, sulphate reduction and denitrification, that have the potential to drive contaminant degradation, were detected at various borehole levels. A comparative molecular analysis of the microbial community between samples obtained from the MLS revealed the microbial community was diverse. The examination of microbial activity complemented those results obtained through chemical analysis, and when combined with hydrological data, showed that MLS samples provided a realistic profile of plume effects and could be related to the potential for natural attenuation of the site.",
keywords = "Groundwater, Microbial ecology, Natural attenuation, Phenol",
author = "Pickup, {R. W.} and G. Rhodes and Alamillo, {M. L.} and Mallinson, {H. E.H.} and Thornton, {S. F.} and Lerner, {D. N.}",
year = "2001",
month = dec,
day = "15",
doi = "10.1016/S0169-7722(01)00169-3",
language = "English",
volume = "53",
pages = "269--284",
journal = "Journal of Contaminant Hydrology",
issn = "0169-7722",
publisher = "Elsevier",
number = "3-4",

}

RIS

TY - JOUR

T1 - Microbiological analysis of multi-level borehole samples from a contaminated groundwater system

AU - Pickup, R. W.

AU - Rhodes, G.

AU - Alamillo, M. L.

AU - Mallinson, H. E.H.

AU - Thornton, S. F.

AU - Lerner, D. N.

PY - 2001/12/15

Y1 - 2001/12/15

N2 - A range of bacteriological, geochemical process-related and molecular techniques have been used to assess the microbial biodegradative potential in groundwater contaminated with phenol and other tar acids. The contaminant plume has travelled 500 m from the pollutant source over several decades. Samples were obtained from the plume using a multi-level sampler (MLS) positioned in two boreholes (boreholes 59 and 60) which vertically transected two areas of the plume. Activity of the microbial community, as represented by phenol degradation potential and ability to utilise a range of substrates, was found to be influenced by the plume. Phenol degradation potential appeared to be influenced more by the concentration of the contaminants than the total bacterial cell numbers. However, in the areas of highest phenol concentration, the depression of cell numbers clearly had an effect. The types of bacteria present were assessed by culture and DNA amplification by polymerase chain reaction (PCR). Bacterial groups or processes associated with major geochemical processes, such as methanogenesis, sulphate reduction and denitrification, that have the potential to drive contaminant degradation, were detected at various borehole levels. A comparative molecular analysis of the microbial community between samples obtained from the MLS revealed the microbial community was diverse. The examination of microbial activity complemented those results obtained through chemical analysis, and when combined with hydrological data, showed that MLS samples provided a realistic profile of plume effects and could be related to the potential for natural attenuation of the site.

AB - A range of bacteriological, geochemical process-related and molecular techniques have been used to assess the microbial biodegradative potential in groundwater contaminated with phenol and other tar acids. The contaminant plume has travelled 500 m from the pollutant source over several decades. Samples were obtained from the plume using a multi-level sampler (MLS) positioned in two boreholes (boreholes 59 and 60) which vertically transected two areas of the plume. Activity of the microbial community, as represented by phenol degradation potential and ability to utilise a range of substrates, was found to be influenced by the plume. Phenol degradation potential appeared to be influenced more by the concentration of the contaminants than the total bacterial cell numbers. However, in the areas of highest phenol concentration, the depression of cell numbers clearly had an effect. The types of bacteria present were assessed by culture and DNA amplification by polymerase chain reaction (PCR). Bacterial groups or processes associated with major geochemical processes, such as methanogenesis, sulphate reduction and denitrification, that have the potential to drive contaminant degradation, were detected at various borehole levels. A comparative molecular analysis of the microbial community between samples obtained from the MLS revealed the microbial community was diverse. The examination of microbial activity complemented those results obtained through chemical analysis, and when combined with hydrological data, showed that MLS samples provided a realistic profile of plume effects and could be related to the potential for natural attenuation of the site.

KW - Groundwater

KW - Microbial ecology

KW - Natural attenuation

KW - Phenol

U2 - 10.1016/S0169-7722(01)00169-3

DO - 10.1016/S0169-7722(01)00169-3

M3 - Journal article

C2 - 11820473

AN - SCOPUS:0035892699

VL - 53

SP - 269

EP - 284

JO - Journal of Contaminant Hydrology

JF - Journal of Contaminant Hydrology

SN - 0169-7722

IS - 3-4

ER -