Home > Research > Publications & Outputs > Modelling the fate of persistent organic pollut...
View graph of relations

Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model. / Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C. et al.
In: Environmental Pollution, Vol. 128, No. 1-2, 03.2004, p. 251-261.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Prevedouros K, MacLeod M, Jones KC, Sweetman AJ. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model. Environmental Pollution. 2004 Mar;128(1-2):251-261. doi: 10.1016/j.envpol.2003.08.041

Author

Prevedouros, Konstantinos ; MacLeod, Matthew ; Jones, Kevin C. et al. / Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model. In: Environmental Pollution. 2004 ; Vol. 128, No. 1-2. pp. 251-261.

Bibtex

@article{cc7f04e929194a62890dbc8b39fbfd99,
title = "Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model.",
abstract = "A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5°×5° grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5–10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it can also be adapted to provide characteristic travel distances and overall environmental persistence, which can be compared with other long-range transport prediction methods.",
author = "Konstantinos Prevedouros and Matthew MacLeod and Jones, {Kevin C.} and Sweetman, {Andrew J.}",
year = "2004",
month = mar,
doi = "10.1016/j.envpol.2003.08.041",
language = "English",
volume = "128",
pages = "251--261",
journal = "Environmental Pollution",
issn = "0269-7491",
publisher = "Elsevier Ltd",
number = "1-2",

}

RIS

TY - JOUR

T1 - Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model.

AU - Prevedouros, Konstantinos

AU - MacLeod, Matthew

AU - Jones, Kevin C.

AU - Sweetman, Andrew J.

PY - 2004/3

Y1 - 2004/3

N2 - A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5°×5° grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5–10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it can also be adapted to provide characteristic travel distances and overall environmental persistence, which can be compared with other long-range transport prediction methods.

AB - A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5°×5° grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5–10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it can also be adapted to provide characteristic travel distances and overall environmental persistence, which can be compared with other long-range transport prediction methods.

U2 - 10.1016/j.envpol.2003.08.041

DO - 10.1016/j.envpol.2003.08.041

M3 - Journal article

VL - 128

SP - 251

EP - 261

JO - Environmental Pollution

JF - Environmental Pollution

SN - 0269-7491

IS - 1-2

ER -