Home > Research > Publications & Outputs > Modulation of phosphatidylcholine biosynthesis ...
View graph of relations

Modulation of phosphatidylcholine biosynthesis in celery by exogenous fatty acids.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

<mark>Journal publication date</mark>15/01/1999
Issue number1
Number of pages5
Pages (from-to)47-51
Publication StatusPublished
<mark>Original language</mark>English


The effects of C16 and C18 fatty acids on the synthesis of phosphatidylcholine were studied in Apium graveolens cell suspension cultures and postmitochondrial supernatants. When cells were exposed to exogenous oleic acid, the rate of phosphatidylcholine biosynthesis increased 1.4-fold within 5 min of the addition of the fatty acid to the culture medium. The sensitivity of microsomal CTP:cholinephosphate cytidylyltransferase (EC to saturated and unsaturated fatty acids was monitored through the addition of unesterified fatty acids to postmitochondrial supernatants. The saturated fatty acids, palmitic and stearic, appeared to have little effect on CTP:cholinephosphate cytidylyltransferase activity, whereas exposure to oleic, linoleic and cis-vaccenic acids resulted in significant increases in enzyme activity. Optimal microsomal CTP:cholinephosphate cytidylyl- transferase activities were achieved by the incubation of postmitochondrial supernatants with 500 μM oleate. The exogenous fatty acids were found to be incorporated into microsomal membranes in their unesterified form. Removal of unesterified fatty acids by incubation of microsomal membranes with defatted bovine serum albumin resulted in the reduction of microsomal CTP:cholinephosphate cytidylyltransferase activity; demonstrating that the enzyme requires unesterified unsaturated fatty acids.