Home > Research > Publications & Outputs > Modulation of tomato root architecture and root...

Electronic data

  • Manuscript-BP-with figures-REVISED

    Accepted author manuscript, 637 KB, Word document

Links

Text available via DOI:

View graph of relations

Modulation of tomato root architecture and root hair traits by Pseudomonas brassicacearum and Variovorax paradoxus containing 1-aminocyclopropane-1-carboxylate deaminase

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Modulation of tomato root architecture and root hair traits by Pseudomonas brassicacearum and Variovorax paradoxus containing 1-aminocyclopropane-1-carboxylate deaminase. / Belimov, A.A.; Ulianich, P.S.; Syrova, D.S. et al.
In: Biologia Plantarum, Vol. 66, 17.09.2022, p. 228-239.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Belimov AA, Ulianich PS, Syrova DS, Shaposhnikov AI, Safronova VI, Dodd IC. Modulation of tomato root architecture and root hair traits by Pseudomonas brassicacearum and Variovorax paradoxus containing 1-aminocyclopropane-1-carboxylate deaminase. Biologia Plantarum. 2022 Sept 17;66:228-239. doi: 10.32615/bp.2022.025

Author

Bibtex

@article{b8033619f8514c78bbc0f3e1f5afbe79,
title = "Modulation of tomato root architecture and root hair traits by Pseudomonas brassicacearum and Variovorax paradoxus containing 1-aminocyclopropane-1-carboxylate deaminase",
abstract = "By decreasing root 1-aminocyclopropane-1-carboxylate (ACC) content and plant ethylene production, the microbial enzyme ACC deaminase is a widespread beneficial trait of plant growth-promoting rhizobacteria (PGPR), ameliorating ethylene-mediated root growth inhibition. However, relatively little is known about whether bacterial ACC deaminase modulates root architecture and root hair traits. Thus the dwarf tomato (Solanum lycopersicum) cultivar Micro-Tom was inoculated in vitro with Pseudomonas brassicacearum Am3, its ACC deaminase deficient mutant T8-1, a known PGPR strain Variovorax paradoxus 5C-2 or chemically treated with agents that promoted or inhibited ethylene production or sensitivity (Ag+, Co2+, and ACC). ACC treatment reduced both root elongation and the number of lateral roots, while ethylene inhibitors (Ag+, Co2+) and V. paradoxus 5C-2 promoted primary root elongation, but differentially affected lateral root length and number. Ag+ stimulated lateral root development, while Co2+ and V. paradoxus 5C-2 did not. Inoculation with P. brassicacearum Am3 and T8-1 inhibited elongation of the primary and lateral roots at a high inoculum concentration (106 cells cm3). All bacterial strains significantly increased the length and number of root hairs, with these effects more pronounced in P. brassicacearum Am3 than in the mutant T8-1. Treatment with Ag+ inhibited root hair formation and elongation, while Co2+ had the opposite effects. ACC treatment had no effect on root hair elongation but increased root hair density. While root growth inhibition caused by P. brassicacearum Am3 was independent of ACC deaminase, the promotion of root hair elongation and density by this strain was augmented by ACC deaminase activity. Thus ACC deaminase can modulate the morphological impacts of bacteria on root hair response by affecting plant ethylene content. {\textcopyright} 2022, Institute of Experimental Botany, ASCR. All rights reserved.",
keywords = "ACC deaminase, cobalt, ethylene, plant growth-promoting rhizobacteria, Pseudomonas brassicacearum, rhizosphere, silver, tomato, Variovorax paradoxus",
author = "A.A. Belimov and P.S. Ulianich and D.S. Syrova and A.I. Shaposhnikov and V.I. Safronova and I.C. Dodd",
note = "Export Date: 20 October 2022",
year = "2022",
month = sep,
day = "17",
doi = "10.32615/bp.2022.025",
language = "English",
volume = "66",
pages = "228--239",
journal = "Biologia Plantarum",
issn = "0006-3134",
publisher = "Springer Netherlands",

}

RIS

TY - JOUR

T1 - Modulation of tomato root architecture and root hair traits by Pseudomonas brassicacearum and Variovorax paradoxus containing 1-aminocyclopropane-1-carboxylate deaminase

AU - Belimov, A.A.

AU - Ulianich, P.S.

AU - Syrova, D.S.

AU - Shaposhnikov, A.I.

AU - Safronova, V.I.

AU - Dodd, I.C.

N1 - Export Date: 20 October 2022

PY - 2022/9/17

Y1 - 2022/9/17

N2 - By decreasing root 1-aminocyclopropane-1-carboxylate (ACC) content and plant ethylene production, the microbial enzyme ACC deaminase is a widespread beneficial trait of plant growth-promoting rhizobacteria (PGPR), ameliorating ethylene-mediated root growth inhibition. However, relatively little is known about whether bacterial ACC deaminase modulates root architecture and root hair traits. Thus the dwarf tomato (Solanum lycopersicum) cultivar Micro-Tom was inoculated in vitro with Pseudomonas brassicacearum Am3, its ACC deaminase deficient mutant T8-1, a known PGPR strain Variovorax paradoxus 5C-2 or chemically treated with agents that promoted or inhibited ethylene production or sensitivity (Ag+, Co2+, and ACC). ACC treatment reduced both root elongation and the number of lateral roots, while ethylene inhibitors (Ag+, Co2+) and V. paradoxus 5C-2 promoted primary root elongation, but differentially affected lateral root length and number. Ag+ stimulated lateral root development, while Co2+ and V. paradoxus 5C-2 did not. Inoculation with P. brassicacearum Am3 and T8-1 inhibited elongation of the primary and lateral roots at a high inoculum concentration (106 cells cm3). All bacterial strains significantly increased the length and number of root hairs, with these effects more pronounced in P. brassicacearum Am3 than in the mutant T8-1. Treatment with Ag+ inhibited root hair formation and elongation, while Co2+ had the opposite effects. ACC treatment had no effect on root hair elongation but increased root hair density. While root growth inhibition caused by P. brassicacearum Am3 was independent of ACC deaminase, the promotion of root hair elongation and density by this strain was augmented by ACC deaminase activity. Thus ACC deaminase can modulate the morphological impacts of bacteria on root hair response by affecting plant ethylene content. © 2022, Institute of Experimental Botany, ASCR. All rights reserved.

AB - By decreasing root 1-aminocyclopropane-1-carboxylate (ACC) content and plant ethylene production, the microbial enzyme ACC deaminase is a widespread beneficial trait of plant growth-promoting rhizobacteria (PGPR), ameliorating ethylene-mediated root growth inhibition. However, relatively little is known about whether bacterial ACC deaminase modulates root architecture and root hair traits. Thus the dwarf tomato (Solanum lycopersicum) cultivar Micro-Tom was inoculated in vitro with Pseudomonas brassicacearum Am3, its ACC deaminase deficient mutant T8-1, a known PGPR strain Variovorax paradoxus 5C-2 or chemically treated with agents that promoted or inhibited ethylene production or sensitivity (Ag+, Co2+, and ACC). ACC treatment reduced both root elongation and the number of lateral roots, while ethylene inhibitors (Ag+, Co2+) and V. paradoxus 5C-2 promoted primary root elongation, but differentially affected lateral root length and number. Ag+ stimulated lateral root development, while Co2+ and V. paradoxus 5C-2 did not. Inoculation with P. brassicacearum Am3 and T8-1 inhibited elongation of the primary and lateral roots at a high inoculum concentration (106 cells cm3). All bacterial strains significantly increased the length and number of root hairs, with these effects more pronounced in P. brassicacearum Am3 than in the mutant T8-1. Treatment with Ag+ inhibited root hair formation and elongation, while Co2+ had the opposite effects. ACC treatment had no effect on root hair elongation but increased root hair density. While root growth inhibition caused by P. brassicacearum Am3 was independent of ACC deaminase, the promotion of root hair elongation and density by this strain was augmented by ACC deaminase activity. Thus ACC deaminase can modulate the morphological impacts of bacteria on root hair response by affecting plant ethylene content. © 2022, Institute of Experimental Botany, ASCR. All rights reserved.

KW - ACC deaminase

KW - cobalt

KW - ethylene

KW - plant growth-promoting rhizobacteria

KW - Pseudomonas brassicacearum

KW - rhizosphere

KW - silver

KW - tomato

KW - Variovorax paradoxus

U2 - 10.32615/bp.2022.025

DO - 10.32615/bp.2022.025

M3 - Journal article

VL - 66

SP - 228

EP - 239

JO - Biologia Plantarum

JF - Biologia Plantarum

SN - 0006-3134

ER -