Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Molecular dynamics simulations of radiation damage in YBa2Cu3O7
AU - Gray, Rebecca
AU - Rushton, Michael J. D.
AU - Murphy, Samuel T
PY - 2022/2/7
Y1 - 2022/2/7
N2 - Abstract The advent of High Temperature Superconductors (HTS) with high field strengths offers the possibility of building smaller, cheaper magnetically confined fusion reactors. However, bombardment by high energy neutrons ejected from the fusion reaction may damage the HTS tapes and impair their operation. Recreating the conditions present in an operational fusion reactor is experimentally challenging, therefore, this work uses molecular dynamics simulations to understand how radiation modifies the underlying crystal structure of YBa2Cu3O7. To facilitate the simulations a new potential was developed that allowed exchange of Cu ions between the two symmetrically distinct sites without modifying the structure. Radiation damage cascades predict the formation of amorphous regions surrounded by regions decorated with Cu and O defects found in the CuO-chains. The simulations suggest that the level of recombination that occurs is relatively low, resulting in a large number of remnant defects and that there is a no substantial temperature effect.
AB - Abstract The advent of High Temperature Superconductors (HTS) with high field strengths offers the possibility of building smaller, cheaper magnetically confined fusion reactors. However, bombardment by high energy neutrons ejected from the fusion reaction may damage the HTS tapes and impair their operation. Recreating the conditions present in an operational fusion reactor is experimentally challenging, therefore, this work uses molecular dynamics simulations to understand how radiation modifies the underlying crystal structure of YBa2Cu3O7. To facilitate the simulations a new potential was developed that allowed exchange of Cu ions between the two symmetrically distinct sites without modifying the structure. Radiation damage cascades predict the formation of amorphous regions surrounded by regions decorated with Cu and O defects found in the CuO-chains. The simulations suggest that the level of recombination that occurs is relatively low, resulting in a large number of remnant defects and that there is a no substantial temperature effect.
KW - Materials Chemistry
KW - Electrical and Electronic Engineering
KW - Metals and Alloys
KW - Condensed Matter Physics
KW - Ceramics and Composites
U2 - 10.1088/1361-6668/ac47dc
DO - 10.1088/1361-6668/ac47dc
M3 - Journal article
VL - 35
JO - Superconductor Science and Technology
JF - Superconductor Science and Technology
SN - 0953-2048
IS - 3
M1 - 035010
ER -