Rights statement: ©2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 846 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Monitoring and Data Analytics for Optical Networking
T2 - Benefits, Architectures, and Use Cases
AU - Velasco, Luis
AU - Chiado Piat, A.
AU - Gonzalez, O.
AU - Lord, A.
AU - Napoli, A.
AU - Layec, P.
AU - Rafique, D.
AU - D'Errico, Antonio
AU - King, Daniel Edward
AU - Ruiz, M.
AU - Cugini, Filippo
AU - Casellas, Ramon
N1 - ©2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2019/11/30
Y1 - 2019/11/30
N2 - Operators' network management continuously measures network health by collecting data from the deployed network devices; data is used mainly for performance reporting and diagnosing network problems after failures, as well as by human capacity planners to predict future traffic growth. Typically, these network management tools are generally reactive and require significant human effort and skills to operate effectively. As optical networks evolve to fulfil highly flexible connectivity and dynamicity requirements, and supporting ultra-low latency services, they must also provide reliable connectivity and increased network resource efficiency. Therefore, reactive human-based network measurement and management will be a limiting factor in the size and scale of these new networks. Future optical networks must support fully automated management, providing dynamic resource re-optimization to rapidly adapt network resources based on predicted conditions and events; identify service degradation conditions that will eventually impact connectivity and highlight critical devices and links for further inspection; and augment rapid protection schemes if a failure is predicted or detected, and facilitate resource optimization after restoration events. Applying automation techniques to network management requires both the collection of data from a variety of sources at various time frequencies, but it must also support the capability to extract knowledge and derive insight for performance monitoring, troubleshooting, and maintain network service continuity. Innovative analytics algorithms must be developed to derive meaningful input to the entities that orchestrate and control network resources; these control elements must also be capable of proactively programming the underlying optical infrastructure. In this article, we review the emerging requirements for optical network management automation, the capabilities of current optical systems, and the development and standardization status of data models and protocols to facilitate automated network monitoring. Finally, we propose an architecture to provide Monitoring and Data Analytics (MDA) capabilities, we present illustrative control loops for advanced network monitoring use cases, and the findings that validate the usefulness of MDA to provide automated optical network management.
AB - Operators' network management continuously measures network health by collecting data from the deployed network devices; data is used mainly for performance reporting and diagnosing network problems after failures, as well as by human capacity planners to predict future traffic growth. Typically, these network management tools are generally reactive and require significant human effort and skills to operate effectively. As optical networks evolve to fulfil highly flexible connectivity and dynamicity requirements, and supporting ultra-low latency services, they must also provide reliable connectivity and increased network resource efficiency. Therefore, reactive human-based network measurement and management will be a limiting factor in the size and scale of these new networks. Future optical networks must support fully automated management, providing dynamic resource re-optimization to rapidly adapt network resources based on predicted conditions and events; identify service degradation conditions that will eventually impact connectivity and highlight critical devices and links for further inspection; and augment rapid protection schemes if a failure is predicted or detected, and facilitate resource optimization after restoration events. Applying automation techniques to network management requires both the collection of data from a variety of sources at various time frequencies, but it must also support the capability to extract knowledge and derive insight for performance monitoring, troubleshooting, and maintain network service continuity. Innovative analytics algorithms must be developed to derive meaningful input to the entities that orchestrate and control network resources; these control elements must also be capable of proactively programming the underlying optical infrastructure. In this article, we review the emerging requirements for optical network management automation, the capabilities of current optical systems, and the development and standardization status of data models and protocols to facilitate automated network monitoring. Finally, we propose an architecture to provide Monitoring and Data Analytics (MDA) capabilities, we present illustrative control loops for advanced network monitoring use cases, and the findings that validate the usefulness of MDA to provide automated optical network management.
U2 - 10.1109/mnet.2019.1800341
DO - 10.1109/mnet.2019.1800341
M3 - Journal article
VL - 33
SP - 100
EP - 108
JO - IEEE Network
JF - IEEE Network
SN - 0890-8044
IS - 6
ER -