Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc
AU - Al-Bander, Baidaa
AU - Al-Nuaimy, Waleed
AU - Williams, Bryan M.
AU - Zheng, Yalin
PY - 2018/2/1
Y1 - 2018/2/1
N2 - Detecting the locations of the optic disc and fovea is a crucial task towards developing automatic diagnosis and screening tools for retinal disease. We propose to address this challenging problem by investigating the potential of applying deep learning techniques to this field. In the proposed method, simultaneous detection of the centers of the fovea and the optic disc (OD) from color fundus images is considered as a regression problem. A deep multiscale sequential convolutional neural network (CNN) is designed and trained. The publically available MESSIDOR and Kaggle datasets are used to train the network and evaluate its performance. The centers of the fovea and the OD in each image were marked by expert graders as the ground truth. The proposed method achieves an accuracy of 97%, 96.7% for the detection of the OD center and 96.6%, 95.6% for the detection of the foveal center of the MESSIDOR and Kaggle test sets respectively. Our promising results demonstrate the excellent performance of the proposed CNNs in simultaneously detecting the centers of both the fovea and OD without human intervention or handcrafted features. Moreover, we can localize the landmarks of an image in 0.007s. This approach could be used as a crucial part of automated diagnosis systems for better management of eye disease.
AB - Detecting the locations of the optic disc and fovea is a crucial task towards developing automatic diagnosis and screening tools for retinal disease. We propose to address this challenging problem by investigating the potential of applying deep learning techniques to this field. In the proposed method, simultaneous detection of the centers of the fovea and the optic disc (OD) from color fundus images is considered as a regression problem. A deep multiscale sequential convolutional neural network (CNN) is designed and trained. The publically available MESSIDOR and Kaggle datasets are used to train the network and evaluate its performance. The centers of the fovea and the OD in each image were marked by expert graders as the ground truth. The proposed method achieves an accuracy of 97%, 96.7% for the detection of the OD center and 96.6%, 95.6% for the detection of the foveal center of the MESSIDOR and Kaggle test sets respectively. Our promising results demonstrate the excellent performance of the proposed CNNs in simultaneously detecting the centers of both the fovea and OD without human intervention or handcrafted features. Moreover, we can localize the landmarks of an image in 0.007s. This approach could be used as a crucial part of automated diagnosis systems for better management of eye disease.
KW - Convlutional neural networks
KW - Diabetes
KW - Fovea detection
KW - Optic disc detection
U2 - 10.1016/j.bspc.2017.09.008
DO - 10.1016/j.bspc.2017.09.008
M3 - Journal article
AN - SCOPUS:85029711683
VL - 40
SP - 91
EP - 101
JO - Biomedical Signal Processing and Control
JF - Biomedical Signal Processing and Control
SN - 1746-8094
ER -