Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - MXene-based novel nanocomposites doped SnO 2 for boosting the performance of perovskite solar cells
AU - Alhamada, T. F.
AU - Hanim, M. A. Azmah
AU - Jung, D. W.
AU - Saidur, R.
AU - Nuraini, A. A.
AU - Hasan, W. Z. Wan
AU - Tan, K. H.
AU - Noh, M. Mohamad
AU - Teridi, M. A. M.
PY - 2024/6/25
Y1 - 2024/6/25
N2 - Since being first published in 2018, the use of two-dimensional MXene in solar cells has attracted significant interest. This study presents, for the first time, the synthesis of an efficient hybrid electrocatalyst in the form of a nanocomposite (MXene/CoS)-SnO2 designed to function as a high-performance electron transfer layer (ETL). The study can be divided into three distinct parts. The first part involves the synthesis of single-layer Ti3C2Tx MXene nanosheets, followed by the preparation of a CoS solution. Subsequently, in the second part, the fabrication of MXene/CoS heterostructure nanocomposites is carried out, and a comprehensive characterization is conducted to evaluate the physical, structural, and optical properties. In the third part, the attention is on the crucial characterizations of the novel nanocomposite-electron transport layer (ETL) solution, significantly contributing to the evolution of perovskite solar cells. Upon optimising the composition, an exceptional power conversion efficiency of more than 17.69% is attained from 13.81% of the control devices with fill factor (FF), short-circuit current density (Jsc), and open-circuit voltage (Voc) were 66.51%, 20.74 mA/cm2, and 1.282 V. Therefore, this PCE is 21.93% higher than the control device. The groundbreaking MXene/CoS (2 mg mL−1) strategy reported in this research represents a promising and innovative avenue for the realization of highly efficient perovskite solar cells.
AB - Since being first published in 2018, the use of two-dimensional MXene in solar cells has attracted significant interest. This study presents, for the first time, the synthesis of an efficient hybrid electrocatalyst in the form of a nanocomposite (MXene/CoS)-SnO2 designed to function as a high-performance electron transfer layer (ETL). The study can be divided into three distinct parts. The first part involves the synthesis of single-layer Ti3C2Tx MXene nanosheets, followed by the preparation of a CoS solution. Subsequently, in the second part, the fabrication of MXene/CoS heterostructure nanocomposites is carried out, and a comprehensive characterization is conducted to evaluate the physical, structural, and optical properties. In the third part, the attention is on the crucial characterizations of the novel nanocomposite-electron transport layer (ETL) solution, significantly contributing to the evolution of perovskite solar cells. Upon optimising the composition, an exceptional power conversion efficiency of more than 17.69% is attained from 13.81% of the control devices with fill factor (FF), short-circuit current density (Jsc), and open-circuit voltage (Voc) were 66.51%, 20.74 mA/cm2, and 1.282 V. Therefore, this PCE is 21.93% higher than the control device. The groundbreaking MXene/CoS (2 mg mL−1) strategy reported in this research represents a promising and innovative avenue for the realization of highly efficient perovskite solar cells.
KW - Hydrothermal method
KW - Nanocomposites
KW - Perovskite solar cells
KW - MXene
U2 - 10.1038/s41598-024-64632-1
DO - 10.1038/s41598-024-64632-1
M3 - Journal article
VL - 14
SP - 14638
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
IS - 1
M1 - 14638
ER -