Rights statement: This is the author’s version of a work that was accepted for publication in Desalination. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Desalination, 554, 2023 DOI: 10.1016/j.desal.2023.116488
Accepted author manuscript, 6.33 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - MXene/MnO2 nanocomposite coated superior salt-rejecting biodegradable luffa sponge for efficient solar steam generation
AU - Saleque, A.M.
AU - Ma, S.
AU - Thakur, A.K.
AU - Saidur, R.
AU - Han, T.K.
AU - Hossain, M.I.
AU - Qarony, W.
AU - Ma, Y.
AU - Sathyamurthy, R.
AU - Tsang, Y.H.
N1 - This is the author’s version of a work that was accepted for publication in Desalination. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Desalination, 554, 2023 DOI: 10.1016/j.desal.2023.116488
PY - 2023/5/15
Y1 - 2023/5/15
N2 - Solar steam generation is widely regarded as one of the potential green approaches for freshwater regeneration by utilizing solar energy. Herein, the MXene/MnO2 nanocomposite-coated biodegradable luffa sponge (Ti3C2-MnO2@LS) is proposed as an efficient solar evaporator for solar steam generation. The thin layer of Ti3C2-MnO2 coated on the surface of the luffa sponge (LS) serves as the solar absorber and enhances the hydrophilicity of the LS, while the thermally insulating LS layer with microporous structure endows sufficient water transportation and localizes heat for interfacial water evaporation. Combining MXene with MnO2 can increase the surface area as well as the stability. The Ti3C2-MnO2@LS delivers a solar evaporation rate as high as 1.36 kg m−2 h−1, with a solar steam conversion efficiency of 85.28 % under one sun irradiation. Furthermore, this Ti3C2-MnO2@LS exhibits superior salt-rejecting properties even under highly concentrated saltwater desalination and excellent wastewater purification performance. This work demonstrates the prospects of combining novel 2D materials with biomass-based materials for practical solar steam generation.
AB - Solar steam generation is widely regarded as one of the potential green approaches for freshwater regeneration by utilizing solar energy. Herein, the MXene/MnO2 nanocomposite-coated biodegradable luffa sponge (Ti3C2-MnO2@LS) is proposed as an efficient solar evaporator for solar steam generation. The thin layer of Ti3C2-MnO2 coated on the surface of the luffa sponge (LS) serves as the solar absorber and enhances the hydrophilicity of the LS, while the thermally insulating LS layer with microporous structure endows sufficient water transportation and localizes heat for interfacial water evaporation. Combining MXene with MnO2 can increase the surface area as well as the stability. The Ti3C2-MnO2@LS delivers a solar evaporation rate as high as 1.36 kg m−2 h−1, with a solar steam conversion efficiency of 85.28 % under one sun irradiation. Furthermore, this Ti3C2-MnO2@LS exhibits superior salt-rejecting properties even under highly concentrated saltwater desalination and excellent wastewater purification performance. This work demonstrates the prospects of combining novel 2D materials with biomass-based materials for practical solar steam generation.
KW - 2D materials
KW - Biomaterials
KW - Desalination
KW - MXene
KW - Solar energy
U2 - 10.1016/j.desal.2023.116488
DO - 10.1016/j.desal.2023.116488
M3 - Journal article
VL - 554
JO - Desalination
JF - Desalination
SN - 0011-9164
M1 - 116488
ER -