Home > Research > Publications & Outputs > Natural and engineered clays and clay minerals ...

Electronic data

  • Mukhopadhyay et al_Clay-PFAS_pre-print

    Rights statement: This is the author’s version of a work that was accepted for publication in Advances in Colloid and Interface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Advances in Colloid and Interface Science, 297, 2021 DOI: 10.1016/j.cis.2021.102537

    Accepted author manuscript, 1.05 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: State-of-the-art and future perspectives

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • R. Mukhopadhyay
  • B. Sarkar
  • K.N. Palansooriya
  • J.Y. Dar
  • N.S. Bolan
  • S.J. Parikh
  • C. Sonne
  • Y.S. Ok
Close
Article number102537
<mark>Journal publication date</mark>30/11/2021
<mark>Journal</mark>Advances in Colloid and Interface Science
Volume297
Number of pages16
Publication StatusPublished
Early online date30/09/21
<mark>Original language</mark>English

Abstract

Poly- and perfluoroalkyl substances (PFAS) present globally in drinking-, waste-, and groundwater sources are contaminants of emerging concern due to their long-term environmental persistence and toxicity to organisms, including humans. Here we review PFAS occurrence, behavior, and toxicity in various water sources, and critically discuss their removal via mineral adsorbents, including natural aluminosilicate clay minerals, oxidic clays (Al, Fe, and Si oxides), organoclay minerals, and clay-polymer and clay‑carbon (biochar and graphene oxide) composite materials. Among the many remediation technologies, such as reverse osmosis, adsorption, advanced oxidation and biologically active processes, adsorption is the most suitable for PFAS removal in aquatic systems. Treatment strategies using clay minerals and oxidic clays are inexpensive, eco-friendly, and efficient for bulk PFAS removal due to their high surface areas, porosity, and high loading capacity. A comparison of partition coefficient values calculated from extracted data in published literature indicate that organically-modified clay minerals are the best-performing adsorbent for PFAS removal. In this review, we scrutinize the corresponding plausible mechanisms, factors, and challenges affecting the PFAS removal processes, demonstrating that modified clay minerals (e.g., surfactant, amine), including some commercially available products (e.g., FLUORO-SORB®, RemBind®, matCARE™), show good efficacy in PFAS remediation in contaminated media under field conditions. Finally, we propose future research to focus on the challenges of using clay-based adsorbents for PFAS removal from contaminated water due to the regeneration and safe-disposal of spent clay adsorbents is still a major issue, whilst enhancing the PFAS removal efficiency should be an ongoing scientific effort.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Advances in Colloid and Interface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Advances in Colloid and Interface Science, 297, 2021 DOI: 10.1016/j.cis.2021.102537