Home > Research > Publications & Outputs > Nonlocal feature learning based on a variationa...

Electronic data

  • Manuscripts_ISPRS_HS

    Rights statement: This is the author’s version of a work that was accepted for publication in ISPRS Journal of Photogrammetry and Remote Sensing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in ISPRS Journal of Photogrammetry and Remote Sensing, 193, 2022 DOI: 10.1016/j.isprsjprs.2022.09.006

    Accepted author manuscript, 2.82 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery. / Su, Hang; Zhang, Xinzheng; Luo, Yuqing et al.
In: ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 193, 01.11.2022, p. 137-149.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Su H, Zhang X, Luo Y, Zhang C, Zhou X, Atkinson P. Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 2022 Nov 1;193:137-149. Epub 2022 Sept 24. doi: 10.1016/j.isprsjprs.2022.09.006

Author

Su, Hang ; Zhang, Xinzheng ; Luo, Yuqing et al. / Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery. In: ISPRS Journal of Photogrammetry and Remote Sensing. 2022 ; Vol. 193. pp. 137-149.

Bibtex

@article{8ff6cd10fc0643b5b833384312ab821e,
title = "Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery",
abstract = "Synthetic aperture radar (SAR) image change detection is a challenging task due to inherent speckle noise, imbalanced class occurrence and the requirement for discriminative feature learning. The traditional handcrafted feature extraction and current convolution-based deep learning techniques have some advantages, but suffer from being limited to neighborhood-based spatial information. The nonlocally observable imbalance phenomenon that exists naturally in small area change detection has presented a huge challenge to methods that focus on local features only. In this paper, an unsupervised method based on a variational graph auto-encoder (VGAE) network was developed for object-based small area change detection using SAR images, with the advantages of alleviating the negative impact of class imbalance and suppressing speckle noise. The main steps include: 1) Three types of difference image (DI) are combined to establish a three-channel fused DI (TCFDI), which lays the data-level foundation for subsequent analysis. 2) Simple linear iterative clustering (SLIC) is used to divide the TCFDI into superpixels regarded as nodes. Two functions are proposed and developed to measure the similarity between nodes to build a weighted undirected graph. 3) A VGAE network is designed and trained using the graph and nodes, and high-level nonlocal feature representations of each node are extracted. The network, with a Gaussian Radial Basis Function constrained by geospatial distances, establishes the connection among nonlocal, but similar superpixels in the process of feature learning, which leads to speckle noise suppression and distinguishable features learned in latent space. The nodes are then identified as changed or unchanged classes via k-means clustering. Five real SAR datasets were used in comparative experiments. Up to 99.72% accuracy was achieved, which is superior to state-of-the-art methods that pay attention only to local information, thus, demonstrating the effectiveness and robustness of the proposed approach.",
keywords = "Synthetic aperture radar, Change detection, Difference image, Graph auto-encoder network, Deep learning",
author = "Hang Su and Xinzheng Zhang and Yuqing Luo and Ce Zhang and Xichuan Zhou and Peter Atkinson",
note = "This is the author{\textquoteright}s version of a work that was accepted for publication in ISPRS Journal of Photogrammetry and Remote Sensing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in ISPRS Journal of Photogrammetry and Remote Sensing, 193, 2022 DOI: 10.1016/j.isprsjprs.2022.09.006",
year = "2022",
month = nov,
day = "1",
doi = "10.1016/j.isprsjprs.2022.09.006",
language = "English",
volume = "193",
pages = "137--149",
journal = "ISPRS Journal of Photogrammetry and Remote Sensing",
issn = "0924-2716",
publisher = "Elsevier Science B.V.",

}

RIS

TY - JOUR

T1 - Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery

AU - Su, Hang

AU - Zhang, Xinzheng

AU - Luo, Yuqing

AU - Zhang, Ce

AU - Zhou, Xichuan

AU - Atkinson, Peter

N1 - This is the author’s version of a work that was accepted for publication in ISPRS Journal of Photogrammetry and Remote Sensing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in ISPRS Journal of Photogrammetry and Remote Sensing, 193, 2022 DOI: 10.1016/j.isprsjprs.2022.09.006

PY - 2022/11/1

Y1 - 2022/11/1

N2 - Synthetic aperture radar (SAR) image change detection is a challenging task due to inherent speckle noise, imbalanced class occurrence and the requirement for discriminative feature learning. The traditional handcrafted feature extraction and current convolution-based deep learning techniques have some advantages, but suffer from being limited to neighborhood-based spatial information. The nonlocally observable imbalance phenomenon that exists naturally in small area change detection has presented a huge challenge to methods that focus on local features only. In this paper, an unsupervised method based on a variational graph auto-encoder (VGAE) network was developed for object-based small area change detection using SAR images, with the advantages of alleviating the negative impact of class imbalance and suppressing speckle noise. The main steps include: 1) Three types of difference image (DI) are combined to establish a three-channel fused DI (TCFDI), which lays the data-level foundation for subsequent analysis. 2) Simple linear iterative clustering (SLIC) is used to divide the TCFDI into superpixels regarded as nodes. Two functions are proposed and developed to measure the similarity between nodes to build a weighted undirected graph. 3) A VGAE network is designed and trained using the graph and nodes, and high-level nonlocal feature representations of each node are extracted. The network, with a Gaussian Radial Basis Function constrained by geospatial distances, establishes the connection among nonlocal, but similar superpixels in the process of feature learning, which leads to speckle noise suppression and distinguishable features learned in latent space. The nodes are then identified as changed or unchanged classes via k-means clustering. Five real SAR datasets were used in comparative experiments. Up to 99.72% accuracy was achieved, which is superior to state-of-the-art methods that pay attention only to local information, thus, demonstrating the effectiveness and robustness of the proposed approach.

AB - Synthetic aperture radar (SAR) image change detection is a challenging task due to inherent speckle noise, imbalanced class occurrence and the requirement for discriminative feature learning. The traditional handcrafted feature extraction and current convolution-based deep learning techniques have some advantages, but suffer from being limited to neighborhood-based spatial information. The nonlocally observable imbalance phenomenon that exists naturally in small area change detection has presented a huge challenge to methods that focus on local features only. In this paper, an unsupervised method based on a variational graph auto-encoder (VGAE) network was developed for object-based small area change detection using SAR images, with the advantages of alleviating the negative impact of class imbalance and suppressing speckle noise. The main steps include: 1) Three types of difference image (DI) are combined to establish a three-channel fused DI (TCFDI), which lays the data-level foundation for subsequent analysis. 2) Simple linear iterative clustering (SLIC) is used to divide the TCFDI into superpixels regarded as nodes. Two functions are proposed and developed to measure the similarity between nodes to build a weighted undirected graph. 3) A VGAE network is designed and trained using the graph and nodes, and high-level nonlocal feature representations of each node are extracted. The network, with a Gaussian Radial Basis Function constrained by geospatial distances, establishes the connection among nonlocal, but similar superpixels in the process of feature learning, which leads to speckle noise suppression and distinguishable features learned in latent space. The nodes are then identified as changed or unchanged classes via k-means clustering. Five real SAR datasets were used in comparative experiments. Up to 99.72% accuracy was achieved, which is superior to state-of-the-art methods that pay attention only to local information, thus, demonstrating the effectiveness and robustness of the proposed approach.

KW - Synthetic aperture radar

KW - Change detection

KW - Difference image

KW - Graph auto-encoder network

KW - Deep learning

U2 - 10.1016/j.isprsjprs.2022.09.006

DO - 10.1016/j.isprsjprs.2022.09.006

M3 - Journal article

VL - 193

SP - 137

EP - 149

JO - ISPRS Journal of Photogrammetry and Remote Sensing

JF - ISPRS Journal of Photogrammetry and Remote Sensing

SN - 0924-2716

ER -