Home > Research > Publications & Outputs > Obtaining accurate chemical shifts for all magn...
View graph of relations

Obtaining accurate chemical shifts for all magnetic nuclei (1H, 13C, 17O, and 27Al) in tris(2,4-pentanedionato-O,O′)aluminium(III) — A solid-state NMR case study

Research output: Contribution to journalJournal articlepeer-review

<mark>Journal publication date</mark>09/2011
<mark>Journal</mark>Canadian Journal of Chemistry
Issue number9
Number of pages8
Pages (from-to)1087-1094
Publication StatusPublished
<mark>Original language</mark>English


We report a complete set of high-resolution solid-state NMR spectra for all magnetic nuclei (1H, 13C, 17O, and 27Al) in the α-form of tris(2,4-pentanedionato-O,O′)aluminium(III), α-Al(acac)3. These high-resolution NMR spectra were obtained by using a host of solid-state NMR techniques: standard cross-polarization under the magic-angle spinning (CPMAS) method for 13C, 1-D homonuclear decoupling using the windowed DUMBO sequence for 1H, double-rotation (DOR) for 17O and 27Al, and multiple-quantum MAS for 27Al. Some experiments were performed at multiple magnetic fields. We show that the isotropic chemical shifts obtained for 1H, 13C, 17O, and 27Al nuclei in α-Al(acac)3 are highly resolved and accurate, regardless of the nature of the targeted nuclear spins (i.e., spin-1/2 or quadrupolar) and, as such, can be treated equally in comparison with computational chemical shifts obtained from a gauge-including projector-augmented wave (GIPAW) plane-wave pseudopotential DFT method.