Home > Research > Publications & Outputs > On representations of affine Temperley-Lieb alg...
View graph of relations

On representations of affine Temperley-Lieb algebras II.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

On representations of affine Temperley-Lieb algebras II. / Green, R. M.; Erdmann, K.
In: Pacific Journal of Mathematics, Vol. 191, No. 2, 1999, p. 243-273.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Green, RM & Erdmann, K 1999, 'On representations of affine Temperley-Lieb algebras II.', Pacific Journal of Mathematics, vol. 191, no. 2, pp. 243-273. <http://pjm.math.berkeley.edu/pjm/1999/191-2/p04.xhtml>

APA

Green, R. M., & Erdmann, K. (1999). On representations of affine Temperley-Lieb algebras II. Pacific Journal of Mathematics, 191(2), 243-273. http://pjm.math.berkeley.edu/pjm/1999/191-2/p04.xhtml

Vancouver

Green RM, Erdmann K. On representations of affine Temperley-Lieb algebras II. Pacific Journal of Mathematics. 1999;191(2):243-273.

Author

Green, R. M. ; Erdmann, K. / On representations of affine Temperley-Lieb algebras II. In: Pacific Journal of Mathematics. 1999 ; Vol. 191, No. 2. pp. 243-273.

Bibtex

@article{45be278593614a558f1a17a1f1acf0e8,
title = "On representations of affine Temperley-Lieb algebras II.",
abstract = "We study some non-semisimple representations of afine Temperley-Lieb algebras and related cellular algebras. In particular, we classify extensions between simple standard modules. Moreover, we construct a completion which is an infinite dimensional cellular algebra.",
author = "Green, {R. M.} and K. Erdmann",
year = "1999",
language = "English",
volume = "191",
pages = "243--273",
journal = "Pacific Journal of Mathematics",
publisher = "University of California, Berkeley",
number = "2",

}

RIS

TY - JOUR

T1 - On representations of affine Temperley-Lieb algebras II.

AU - Green, R. M.

AU - Erdmann, K.

PY - 1999

Y1 - 1999

N2 - We study some non-semisimple representations of afine Temperley-Lieb algebras and related cellular algebras. In particular, we classify extensions between simple standard modules. Moreover, we construct a completion which is an infinite dimensional cellular algebra.

AB - We study some non-semisimple representations of afine Temperley-Lieb algebras and related cellular algebras. In particular, we classify extensions between simple standard modules. Moreover, we construct a completion which is an infinite dimensional cellular algebra.

M3 - Journal article

VL - 191

SP - 243

EP - 273

JO - Pacific Journal of Mathematics

JF - Pacific Journal of Mathematics

IS - 2

ER -