Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - On the performance of turbo codes in quasi-static fading channels
AU - Rodrigues, Miguel R. D.
AU - Chatzigeorgiou, Ioannis
AU - Wassell, Ian J.
AU - Carrasco, Rolando
PY - 2005/9
Y1 - 2005/9
N2 - In this paper, we investigate in detail the performance of turbo codes in quasi-static fading channels both with and without antenna diversity. First, we develop a simple and accurate analytic technique to evaluate the performance of turbo codes in quasi-static fading channels. The proposed analytic technique relates the frame error rate of a turbo code to the iterative decoder convergence threshold, rather than to the turbo code distance spectrum. Subsequently, we compare the performance of various turbo codes in quasi-static fading channels. We show that, in contrast to the situation in the AWGN channel, turbo codes with different interleaver sizes or turbo codes based on RSC codes with different constraint lengths and generator polynomials exhibit identical performance. Moreover, we also compare the performance of turbo codes and convolutional codes in quasi-static fading channels under the condition of identical decoding complexity. In particular, we show that turbo codes do not outperform convolutional codes in quasi-static fading channels with no antenna diversity; and that turbo codes only outperform convolutional codes in quasi-static fading channels with antenna diversity
AB - In this paper, we investigate in detail the performance of turbo codes in quasi-static fading channels both with and without antenna diversity. First, we develop a simple and accurate analytic technique to evaluate the performance of turbo codes in quasi-static fading channels. The proposed analytic technique relates the frame error rate of a turbo code to the iterative decoder convergence threshold, rather than to the turbo code distance spectrum. Subsequently, we compare the performance of various turbo codes in quasi-static fading channels. We show that, in contrast to the situation in the AWGN channel, turbo codes with different interleaver sizes or turbo codes based on RSC codes with different constraint lengths and generator polynomials exhibit identical performance. Moreover, we also compare the performance of turbo codes and convolutional codes in quasi-static fading channels under the condition of identical decoding complexity. In particular, we show that turbo codes do not outperform convolutional codes in quasi-static fading channels with no antenna diversity; and that turbo codes only outperform convolutional codes in quasi-static fading channels with antenna diversity
U2 - 10.1109/ISIT.2005.1523410
DO - 10.1109/ISIT.2005.1523410
M3 - Conference contribution/Paper
SN - 0-7803-9151-9
SP - 622
EP - 626
BT - 2005 IEEE International Symposium on Information Theory
PB - IEEE
ER -