Home > Research > Publications & Outputs > Optimisation of XAD extraction methodology for ...

Electronic data

  • 1-s2.0-S2352186417302456-main

    Rights statement: This is the author’s version of a work that was accepted for publication in Environmental Technology & Innovation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Technology & Innovation, 9, 2018 DOI: 10.1016/j.eti.2017.11.011

    Accepted author manuscript, 330 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Optimisation of XAD extraction methodology for the assessment of biodegradation potential of 14C-phenanthene in soil

Research output: Contribution to journalJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>02/2018
<mark>Journal</mark>Environmental Technology and Innovation
Volume9
Number of pages11
Pages (from-to)140-150
Publication StatusPublished
Early online date23/11/17
<mark>Original language</mark>English

Abstract

This study investigated the use of a hydrophobic resin, amberlite XAD, as a tool for assessing the biodegradation potential of 14C-phenanthene in soil. The method was optimised in terms of soil/XAD ratio, shaking, extraction time and eluting solvent. The most effective method was then tested on selected XADs, and the performance compared with cyclodextrin (HP- β -CD) and dichloromethane (DCM) extractions suitability to predict phenanthrene biodegradation in soil over 100 d. Results showed that the optimum conditions for the XAD extraction technique are a 2:1 soil/XAD ratio, 100 rpm mixing for 22 h and elution using a DCM:methanol solution (1:1). Mineralisation of 14C-phenanthrene was accurately predicted by HP- β -CD ( r 2 = 0 . 990 , slope  =  0.953, intercept  =  1.374) and XAD-4 extractions ( r 2 = 0 . 989 , slope  =  0.820, intercept  =  6.567), while DCM overestimated the bioaccessibility of  14C-phenanthrene ( r 2 = 0 . 999 , slope  =  1.328, intercept  = − 49 . 507 ). This investigation showed that XAD extraction can be considered a suitable non-exhaustive technique for estimating biodegradability of phenanthrene in soil.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Environmental Technology & Innovation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Technology & Innovation, 9, 2018 DOI: 10.1016/j.eti.2017.11.011