Accepted author manuscript, 1.63 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Parallel computational ghost imaging with modulation patterns multiplexing and permutation inspired by compound eyes
AU - Ma, Mengchao
AU - Shen, Yinran
AU - Zha, Peiyuan
AU - Guan, Qingtian
AU - Zhong, Xiang
AU - Deng, Huaxia
AU - Zhang, Xuming
AU - Wang, Ziwei
PY - 2024/2/12
Y1 - 2024/2/12
N2 - Real-time computational ghost imaging (CGI) has received significant attention in recent years to overcome the trade-off between long acquisition time and high reconstructed image quality of CGI. Inspired by compound eyes, we propose a parallel computational ghost imaging with modulation patterns multiplexing and permutation to achieve a faster and high-resolution CGI. With modulation patterns multiplexing and permutation, several small overlapping fields-of-view can be obtained; meanwhile, the difficulty in alignment of illumination light field and multiple detectors can be well resolved. The method combining compound eyes with multi-detectors to capture light intensity can resolve the issue of a gap between detector units in the array detector. Parallel computation facilitates significantly reduced acquisition time, while maintaining reconstructed quality without compromising the sampling ratio. Experiments indicate that using m × m detectors reduce modulation pattern count, projector storage, and projection time to around 1/m2 of typical CGI methods, while increasing image resolution to m2 times. This work greatly promotes the practicability of parallel computational ghost imaging and provides optional solution for real-time computational ghost imaging.
AB - Real-time computational ghost imaging (CGI) has received significant attention in recent years to overcome the trade-off between long acquisition time and high reconstructed image quality of CGI. Inspired by compound eyes, we propose a parallel computational ghost imaging with modulation patterns multiplexing and permutation to achieve a faster and high-resolution CGI. With modulation patterns multiplexing and permutation, several small overlapping fields-of-view can be obtained; meanwhile, the difficulty in alignment of illumination light field and multiple detectors can be well resolved. The method combining compound eyes with multi-detectors to capture light intensity can resolve the issue of a gap between detector units in the array detector. Parallel computation facilitates significantly reduced acquisition time, while maintaining reconstructed quality without compromising the sampling ratio. Experiments indicate that using m × m detectors reduce modulation pattern count, projector storage, and projection time to around 1/m2 of typical CGI methods, while increasing image resolution to m2 times. This work greatly promotes the practicability of parallel computational ghost imaging and provides optional solution for real-time computational ghost imaging.
U2 - 10.1063/5.0187882
DO - 10.1063/5.0187882
M3 - Journal article
VL - 124
JO - Applied Physics Letters
JF - Applied Physics Letters
SN - 0003-6951
IS - 7
M1 - 071110
ER -