Home > Research > Publications & Outputs > PART A-Quantum information-Entanglement, EPR co...

Text available via DOI:

View graph of relations

PART A-Quantum information-Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

PART A-Quantum information-Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification. / Caminati, Marco; Martini, Francesco De; Perris, Riccardo et al.
In: Physical Review-Section A-Atomic Molecular and Optical Physics, Vol. 74, 062304, 07.12.2006.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Caminati, M, Martini, FD, Perris, R, Sciarrino, F & Secondi, V 2006, 'PART A-Quantum information-Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification', Physical Review-Section A-Atomic Molecular and Optical Physics, vol. 74, 062304. https://doi.org/10.1103/PhysRevA.74.062304

APA

Caminati, M., Martini, F. D., Perris, R., Sciarrino, F., & Secondi, V. (2006). PART A-Quantum information-Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification. Physical Review-Section A-Atomic Molecular and Optical Physics, 74, Article 062304. https://doi.org/10.1103/PhysRevA.74.062304

Vancouver

Caminati M, Martini FD, Perris R, Sciarrino F, Secondi V. PART A-Quantum information-Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification. Physical Review-Section A-Atomic Molecular and Optical Physics. 2006 Dec 7;74:062304. doi: 10.1103/PhysRevA.74.062304

Author

Caminati, Marco ; Martini, Francesco De ; Perris, Riccardo et al. / PART A-Quantum information-Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification. In: Physical Review-Section A-Atomic Molecular and Optical Physics. 2006 ; Vol. 74.

Bibtex

@article{6b616ff3a3964f8591b9955957cde4d4,
title = "PART A-Quantum information-Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification",
abstract = "We investigate the multiparticle quantum superposition and the persistence of bipartite entanglement of the output field generated by the quantum injected high-gain optical parametric amplification of a single photon. The physical configuration based on the optimal universal quantum cloning has been adopted to investigate how the entanglement and the quantum coherence of the system persists for large values of the nonlinear parametric gain g.",
author = "Marco Caminati and Martini, {Francesco De} and Riccardo Perris and Fabio Sciarrino and Veronica Secondi",
year = "2006",
month = dec,
day = "7",
doi = "10.1103/PhysRevA.74.062304",
language = "English",
volume = "74",
journal = "Physical Review-Section A-Atomic Molecular and Optical Physics",

}

RIS

TY - JOUR

T1 - PART A-Quantum information-Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification

AU - Caminati, Marco

AU - Martini, Francesco De

AU - Perris, Riccardo

AU - Sciarrino, Fabio

AU - Secondi, Veronica

PY - 2006/12/7

Y1 - 2006/12/7

N2 - We investigate the multiparticle quantum superposition and the persistence of bipartite entanglement of the output field generated by the quantum injected high-gain optical parametric amplification of a single photon. The physical configuration based on the optimal universal quantum cloning has been adopted to investigate how the entanglement and the quantum coherence of the system persists for large values of the nonlinear parametric gain g.

AB - We investigate the multiparticle quantum superposition and the persistence of bipartite entanglement of the output field generated by the quantum injected high-gain optical parametric amplification of a single photon. The physical configuration based on the optimal universal quantum cloning has been adopted to investigate how the entanglement and the quantum coherence of the system persists for large values of the nonlinear parametric gain g.

U2 - 10.1103/PhysRevA.74.062304

DO - 10.1103/PhysRevA.74.062304

M3 - Journal article

VL - 74

JO - Physical Review-Section A-Atomic Molecular and Optical Physics

JF - Physical Review-Section A-Atomic Molecular and Optical Physics

M1 - 062304

ER -