Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Particle settling in a shear-thinning, viscoelastic fluid in the presence of wall effects
AU - Whorton, Jodie
AU - Jones, Thomas
AU - Russell, Kelly
PY - 2025/2/6
Y1 - 2025/2/6
N2 - The settling of particles in fluids is a widespread phenomenon and commonly involves accounting for the effects of walls. Particle settling and wall effects are well understood for Newtonian fluids but the consequences of non-Newtonian fluid properties on particle settling are less well known. Here, we present the results from a set of experiments quantifying wall effects on particle settling within quiescent shear-thinning and viscoelastic (non-Newtonian) fluids for sphere-to-tube diameter ratios λ≤0.3. We find that wall effects on particle settling are reduced in non-Newtonian fluids and settling velocities are poorly predicted by conventional wall-corrected Stokes’ equations. We show that deviations in settling velocity are due to both the shear-thinning and viscoelastic properties of the fluid. Supported by our experimental dataset, we are able to show that calculating the shear-rate based on the particle diameter length-scale corresponds to an apparent viscosity that appropriately accounts for shear-thinning effects. A further correction factor for viscoelastic behaviour based on λ and the Weissenberg number, Wi, is applied, and shows good agreement with all experimentally measured velocities. Together, we provide a quantitative method to accurately predict the terminal settling velocity of particles in shear-thinning, viscoelastic fluids up to sphere-to-tube diameter ratios of 0.3.
AB - The settling of particles in fluids is a widespread phenomenon and commonly involves accounting for the effects of walls. Particle settling and wall effects are well understood for Newtonian fluids but the consequences of non-Newtonian fluid properties on particle settling are less well known. Here, we present the results from a set of experiments quantifying wall effects on particle settling within quiescent shear-thinning and viscoelastic (non-Newtonian) fluids for sphere-to-tube diameter ratios λ≤0.3. We find that wall effects on particle settling are reduced in non-Newtonian fluids and settling velocities are poorly predicted by conventional wall-corrected Stokes’ equations. We show that deviations in settling velocity are due to both the shear-thinning and viscoelastic properties of the fluid. Supported by our experimental dataset, we are able to show that calculating the shear-rate based on the particle diameter length-scale corresponds to an apparent viscosity that appropriately accounts for shear-thinning effects. A further correction factor for viscoelastic behaviour based on λ and the Weissenberg number, Wi, is applied, and shows good agreement with all experimentally measured velocities. Together, we provide a quantitative method to accurately predict the terminal settling velocity of particles in shear-thinning, viscoelastic fluids up to sphere-to-tube diameter ratios of 0.3.
U2 - 10.1038/s41598-025-87742-w
DO - 10.1038/s41598-025-87742-w
M3 - Journal article
VL - 15
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
IS - 1
M1 - 4482
ER -